

IT 11 024

Examensarbete 30 hp
May 2011

The Design, Implementation and
Evaluation of a Pluggable Type
Checker for Thread-Locality in Java

Amanj Sherwany

Institutionen för informationsteknologi
Department of Information Technology

To mom, dad
& my beloved girlfriend

i

ii

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

The Design, Implementation and Evaluation of a
Pluggable Type Checker for Thread-Locality in Java

Amanj Sherwany

This thesis presents a simple type system for expressing thread-locality in Java.
Classes and types are annotated to express thread-locality and violations, where
supposedly thread-local data may be shared between two or more threads, are
detected at compile-time. The proposed system is an improvement over Loci, a
minimal and modular type checker for expressing thread-locality in Java due to
Wrigstad et al.
The improved Loci system presented in this thesis only adds an additional metadata
annotation, four in total. We implemented the system as a command line tool that
can be plugged into the standard javac compiler and used it to evaluate our design on
a number of benchmarks.
We believe that Loci is compatible with how Java programs are written and that the
improved system keeps the annotation overhead light while making it even simpler to
treat a value as thread-local.

Tryckt av: Reprocentralen ITC
IT 11 024
Examinator: Anders Jansson
Ämnesgranskare: Konstantinos Sagonas
Handledare: Tobias Wrigstad

iv

Acknowledgements

I thank my thesis adviser, Tobias Wrigstad, his continuous help, corrections
and suggestions made my job a lot easier. Many thanks to my reviewer,
Kostis Sagonas, for revising my work and his great suggestions.

I also thank the developers behind the Checker framework who work hard
to develop such an awesome tool, and they had a very great online support.
And Adam Warski who developed the Maven2 plugin for the Checker frame-
work was also helpful, as I forked his work to develop a Maven2 plugin for
Loci which is based on the Checker framework’s Maven2 plugin.

My lovely girlfriend, Nosheen Zaza, was a great support during my work
on this thesis, we used to have discussions about Loci together and most of
the time I was considering her suggestions and directions, I really thank her.
Also Sobhan Badeyozaman and Karwan Jaksi, who were my colleagues had
supported me mentally. At the end I want to thank my sisters and brothers
for their continuous support, thank you all.

v

vi

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Thread-Locality . 1

1.1.2 Pluggable Type Checkers 2

1.2 Purpose and Goal . 3

1.3 Outline . 4

2 Introducing Loci 5

2.1 Loci’s Logical View of Memory 5

2.2 Annotations . 6

2.3 Integration with Core Java Concepts 7

2.3.1 Classes and Types . 7

2.3.2 Fields and Thread-Locality 8

2.3.3 Statics and Thread-Locality 8

2.3.4 @Owner and Subtyping 9

2.3.5 Arrays and Generics 11

2.3.6 Throwable and Java’s Thread API 11

2.4 Loci Through an Example . 12

3 Design decisions 15

3.1 Path of Evolution from Loci 1.0 15

3.2 Subsumption and Generics . 16

3.3 Changing Class Defaults . 18

3.4 Locality Polymorphic Methods 19

3.5 Annotating Common Methods 20

3.5.1 The Equals Method 21

3.5.2 The Clone Method . 21

4 The Loci Tool 23

4.1 JSR 308 . 23

4.2 The Checker Framework . 24

4.3 Installing and Running Loci 25

4.4 Known Bugs and Limitations 27

4.4.1 Implementing Parameterized Interfaces 27

vii

4.4.2 Anonymous Classes Need Explicit Annotations 28
4.4.3 @Owner Causes Problems in Subclassing 28
4.4.4 Miscalculating Arrays of Type Arguments 29
4.4.5 Incorrect Inference of Method Type Arguments 29

5 Evaluating Loci 31
5.1 Benchmarking Loci . 31

5.1.1 Observations . 36
5.2 Conclusions . 37

6 Conclusion 39
6.1 Results . 39
6.2 Future work . 40

Bibliography 41

viii

List of Figures

2.1 Thread-Local Heaplets and a Shared Heap 6
2.2 Annotation lattice capturing dataflow constraints 7

4.1 How Loci processes and checks source code. 26

List of Tables

5.1 The result of annotating the Lucene Search Library. 34
5.2 The result of annotating the RayTracer benchmark. 35
5.3 The result of annotating the Lusearch benchmark. 36

Listings

2.1 An example to show static methods, blocks and fields. 8
2.2 A short example that shows how Loci performs and constrains

Java programs. 12
3.1 Shows how types within a static context are treated in Loci. . 19
3.2 A method with more than one @X annotations 20
3.3 Two method type parameters that have the same thread-locality 20
5.1 The refactored Raytracer program. 32
5.2 An excerpt of the RayTracer benchmark. 33

ix

x

CHAPTER 1

INTRODUCTION

I believe we can have our cake
and eat (most of) it too.

Gilad Bracha, Pluggable Type
Systems

1.1 Background

Manually verifying properties of programs is hard and prone to errors. In
this light, programmers need tools that help them express their intentions
in a way that can be checked automatically, preferably at compile-time.
Thread-locality is an often desirable property of data objects in parallel
or concurrent programs. Knowing that some of the objects that are ma-
nipulated by a system are thread-local relieves programmers from worrying
about concurrency control for those parts of the system [21]. In this thesis,
we report on the design, implementation and evaluation of a programmer
tool for expressing and statically checking thread-locality in Java programs
to facilitate correct parallel and concurrent programming.

1.1.1 Thread-Locality

Today, most computers have more than a single core and are powerful
enough to run several tasks concurrently. To make use of this power, pro-
grams should be designed with parallelism in mind and most of today’s
programming languages have built in support for multi-threading or other
forms of parallelism [20].

Java has a built-in support for multi-threading, which requires library
developers to consider issues of thread-safety in their library designs, which

1

complicates programming and at worst break compositionality of code due
to conflicting locking behaviour.

Thread-local values make parallel and concurrent programming easier,
since accesses to thread-local data are sequential and thereby relatively easy
to reason about. For example, there will never be data races or dead locks
on thread-local data. There are several other advantages of thread-locality:
in real-time systems, thread-locality avoids lock inflation which is important
when calculating worst-case run-times/paths, garbage collectors for thread-
local data can execute in parallel with the rest of the system, and, finally,
manipulation of thread-local data does not need synchronization with main
memory since there can be no other witnesses to a change [21].

Most mainstream programming languages lack support for expressing
thread-locality and programmers are forced to fall-back to documentation
or unverified source-level comments. Conservatively, we must consider any
accesses to a field in the program as potentially violating intended thread-
locality. The only way to “guarantee” that supposedly thread-local data
stays thread-local (in our terminology, does not leak or escape the designated
thread) is by ocular inspection of the source code of potentially many classes
in a program.

Java has supported thread-local fields through its ThreadLocal API [7]
since version 1.2 [15]. These utility classes allow defining fields for which each
accessing thread has its own copy and consequently access the field in a race-
free manner. However, nothing prevents the contents of the field to be shared
across threads. In this respect, the “protection” that is offered by using the
ThreadLocal class is similar to that of name-based encapsulation [21].

A Java compiler does not enforce proper use of library code from a se-
mantic perspective. Where thread-locality is concerned, Java programs do
not prevent reading thread-local fields and storing the results in globally
accessible locations, which might violate thread-locality altogether. The
only way to obtain automatic guarantees for thread-locality is by using only
thread-local fields which is cumbersome, prone to errors, and has an unreas-
onable overhead in terms of field size and field access time. In short, Java
offers no support for avoiding thread-locality violations. In a program where
thread-locality is important, programmers need tool support to express and
check thread-locality.

1.1.2 Pluggable Type Checkers

Pluggable type checkers were proposed by Bracha [9] to allow static checking
of different program properties at different stages of program development.
Checks for different properties can be plugged in or removed or combined
freely and, according to Bracha, have most of the advantages of mandat-
ory type systems without most of the drawbacks [9]. In Bracha’s terms, a
pluggable type checker:

2

1. has no effect on the run-time semantics of the programming language,
and

2. does not mandate type annotations in the syntax.

There are many frameworks for extending programming languages by cus-
tom pluggable type checkers [14, 11, 18]. Java 6 and Java 7 [5] both have
basic support for pluggable type checkers, through support for metadata an-
notations that can be checked by the Annotation Processing Tool (apt) [1].
Starting with Java 8, a more expressive annotation system will subsume the
existing one, along with a framework for the easy specification of pluggable
checkers [6, 13].

There is an extensive development for Java’s upcoming type checker [14,
11] called the Checker framework and a preview version of the system already
exists.

1.2 Purpose and Goal

In this thesis, we extend earlier work by Wrigstad et al. [21] on Loci, a
pluggable type checker for thread-locality in Java. Loci was designed with
the following design goals in mind:

DG1: Conservative checking (soundness) It should detect all leaks that
occur or might occur. False positives might ensue.

DG2: Backwards compatibility It should be possible and feasible to
“port” legacy Java code to use Loci without requiring extensive re-
writes.

DG3: Optional checking Makes applying the checker only on a part of
the code possible.

DG4: Low annotation overhead Aimed to have a good selection for de-
fault annotations so the programmers need only a few number of an-
notations to express their intentions.

DG5: Fully defined The checker should cover all features of the targeted
programming language.

However, the initial Loci system proposed by Wrigstad et al. took a number
of shortcuts which compromised the design integrity of the system. This
lead to many lost opportunities to express actual thread-locality, and several
important Java idioms that could not readily be expressed.

This thesis improves the design of Loci, and evaluates its improvements
through practical evaluations on well-known multi-threaded Java benchmark
sources. Specifically, we make the following contributions:

3

C1: Support for generics We extended the design of Loci to support
annotations on type parameters in generic classes. More details can
be found in Sections 2.3.5 and 3.2.

C2: Locality-polymorphic methods We extended the design further to
support method type parameters too. More details can be found in
Sections 2.3.3 and 3.4.

C3: Changing default annotations We changed some of the default an-
notations, like: classes are “flexible” by default instead of @Shared.
More in Section 3.3.

C4: Typing cloning and equals We annotated the clone and equals
methods in Object class which is the parent of every Java class, thus
constrains the interface of every occurrence of those two methods in
every Java classes. More in Section 3.5.

C5: Implementation of a stand-alone checker We implemented Loci
as a compiler plugin, using the Checker framework [11, 14] which re-
ports a warning or an error as soon as it detects a thread-locality leak.
More in Chapter 4.

C6: Design Evaluation We evaluated Loci by applying it on several stand-
ard benchmarks [8, 3]. More in Chapter 5.

We believe that the resulting system is compatible with how Java programs
are written, and requires a low annotation overhead (∼ 15 annotations/K-
LOC), and improves on the previous Loci design by allowing unannotated
classes to create thread-local values.

1.3 Outline

This thesis consists of six chapters. The second chapter introduces Loci and
its core design concepts. The third chapter is a continuation of the second
chapter, covering our improvements from Loci 1.0 to Loci 2.0.

The fourth chapter discusses the Loci tool and its dependencies and
known bugs. Chapter 5, discusses the evaluation of our design using a set
of well-known benchmarks. The last chapter concludes and outlines future
work.

4

CHAPTER 2

INTRODUCING LOCI

Make everything as simple as
possible, but not simpler

Albert Einstein

Having stressed the importance of thread-locality and the reasons for
having a tool support to enable programmers to statically check their
programs against thread-locality violations, we now present original
Loci system that the thesis extends. The chapter starts by present-
ing Loci’s logical view of memory, its annotations, and its core design.
Finally the chapter ends with an example of applying Loci to real-world
code.

2.1 Loci’s Logical View of Memory

Loci logically divides the heap into a number “heaplets”. Each thread has
its own heaplet, and each heaplet has only one thread. There is also a
heap which is shared among all the threads. A similar approach has been
proposed also by Wrigstad et. al [21], Domani et. al [12] and Steensgaard et.
al [19]. The Loci annotation system enforces the following simple properties
on Java programs, shown in Figure 2.11:

1. References from one heaplet into another are not allowed ().

2. References from heaplets to the shared heap are unrestricted ().

3. References from the shared-heap into a heaplet must be stored in a
thread-local field ().

1The figure is taken from Wrigstad et al. [21].

5

ρ1 ρ2 ρ3 ρ4 ϱ

(a)

(b)
(c)

(d)

(e)

Figure 2.1: Thread-Local Heaplets and a Shared Heap. The teal area (%) is the shared
heap, white areas (ρ1..ρ4) represent the thread-local heaplets. Solid arrows are invalid
and correspond to Property 1 in 2.1, dashed arrows are valid pointers into the shared
heap (Property 2), respectively from the shared heap into heaplets (Property 3, when
“anchored” in a bullet). The right-most figure is a Venn diagram-esque depiction of the
same program to illustrate the semantics of the shared heap

The third property above ensures that a thread-local data (ρi) is only
accessible by the thread i to which ρi belongs. But if jth thread wants to
access the same data, it will either get a reference to ρj (which belongs to
jth thread) or null. This property ensures that each active thread in the
system has its own copy of each thread-local field. Therefore, it ensures that
different threads access different thread-local fields [21].

Together, these simple properties make heaplets effectively thread-local,
and objects in the heaplets are thus safe from race conditions and data
races [21].

2.2 Annotations

Loci extends Java with three annotations2:

@Local which denotes a thread-local value;

@Shared which denotes a value that can be arbitrarily shared between
threads; and

@ThreadSafe which denotes a value that must be treated in such a way
that thread-locality is preserved, but the value may not be thread-
local in practice. It is used to allow a limited form of parametricity
and denotes an object whose thread-locality is not known and must
therefore be treated conservatively.

Clearly, at run-time, every value is either thread-local or not. The pur-
pose of @ThreadSafe annotation is to enable flexibility and variability in a

2In fact there are other annotations too, but these three are the core annotations in
Loci.

6

@ThreadSafe
��

@Local

??���������������������
@Shared

__@@@@@@@@@@@@@@@@@@@ ��

⊥

??~~~~~~~~~~~~~~~~~~~

__???????????????????

Figure 2.2: Annotation lattice capturing dataflow constraints. Each wedge
denotes permitted dataflow. ⊥ denotes “free” objects.

design, e.g. methods that accept both @Local and @Shared values, such as
Java’s equals method, see Section 3.5.

Loci requires that dataflow preserves the thread-locality of a value in a
variable, except for assignments into @ThreadSafe. This dictates what must
hold if the contents of a variable y is stored into a variable, field or parameter
x (by assignment, argument passing, etc.). For clarity, a summary is found
in Figure 2.2.

Unlike @Shared and @Local, @ThreadSafe annotation cannot appear
on class declarations and object instantiations. However, they all can ap-
pear on variable declarations, arrays, parameters, generics and method type
parameters.

2.3 Integration with Core Java Concepts

2.3.1 Classes and Types

Classes in Loci can be @Local or @Shared. @Shared classes can only be
instantiated as shared objects and @Local classes can only be instantiated
as thread-local objects. A class is @Local (or @Shared) if the class, its
super class or one of its implemented interfaces is annotated @Local (or
@Shared). A class which has no explicit annotation and has no direct or
indirect @Shared or @Local superclass (or implemented interfaces) is treated
specially and can be used to create both shared and thread-local instances.
These classes are useful for libraries and other situations where flexibility is
desirable, in this thesis we call them “flexible classes”.

7

@Local and @Shared classes may only be subclassed by @Local and
@Shared classes respectively, while flexible classes can be subclassed by
@Local, @Shared or flexible classes. In Loci, the Object root class is flexible,
which is an important design choice to allow maximum flexibility, since it is
the parent class of every valid Java class.

If c is a field, variable, return type or parameter and is declared without
having an explicit annotation and is an instance of class T when T is a flexible
class, then c’s thread-locality will be the same as the current instance/object
that holds it, we call these @Owner types.

class Foo { //A flexible class
Object f;

}

@Local Foo a = ...; //A thread-local instance of Foo

@Shared Foo b = ...; //A shared instance of Foo

//a.f is thread-local, and b.f is shared

2.3.2 Fields and Thread-Locality

@Local or @ThreadSafe fields are not allowed inside @Shared and flexible
classes. This is necessary since the enclosing object might be shared across
threads making the field effectively shared too. One way to have them is by
implementing them through a java.lang.ThreadLocal indirection, which
degrades performance.

@Shared class Foo{
@Local Object a; //Invalid

ThreadLocal<@Local Object> b; //OK

}

2.3.3 Statics and Thread-Locality

Class objects are shared by default (in Loci’s eyes, completely ignorant of
class loaders, etc.). In Java, the enclosing object of a static context is a class
object. Therefore, every unannotated type with a flexible in static context
defaults to @Shared (for reasoning refer to Section 2.3.1).

@Local class Foo {
static Object f; //implicitly @Shared

static {
@Shared Object x = new Object();
f = x; // OK, f is implicitly @Shared

}

8

static Object id(Object o1) { return o1; }
static Foo fooId(Foo o2) { return o2; }
}

Listing 2.1: An example to show static methods, blocks and fields.

The above listing shows that the default annotations within a static
context is @Shared. Considering the id(Object o1) method which takes
an Object and returns an Object. We mentioned in Section 2.3.1, Object
is a flexible class, therefore the thread-locality of its unannotated instances
depend on their enclosing objects. But since Loci can trivially decide that
the enclosing object is @Shared3 the implicit annotations will be @Shared,
which means the id method is identical to:

static @Shared Object id(@Shared Object o1) { return o1; }

In the above method, Java (as well as Loci) loses type information. If
we want to keep the type information we should refactor the method to use
polymorphic type argument:

static <T extends Object> T id(T o1) { return o1; }

One of our major contribution in this work was extending Loci with
another annotation4, called @X, which is used only within method type ar-
gument declarations. Upon method call, the @X annotations are replaced
with the passed parameter’s annotation5. There are several benefits of hav-
ing this annotation, most importantly supporting for a method that can deal
with both @Shared and @Local variables without losing the type informa-
tion.

static <@X T extends Object> T id(T o1) { return o1; }
...

@Local Object b = Foo.id(new @Local Object()); //OK
@Shared Object b = Foo.id(new @Shared Object()); //OK

2.3.4 @Owner and Subtyping

As we mentioned in Section 2.3.1 an @Owner inherits its thread-locality from
the object that contains it [22]. Therefore, an @Owner inside a @Shared
object is @Shared, and an @Owner inside a @Local object is @Local.

class Foo{
Object value; //Implicitly @Owner

//The parameter type is implicitly @Owner

void setValue(Object value){

3As they are within a static context.
4Listed as C2 in Section 1.2
5For more information refer to Section 3.4

9

this.value = value;
}

//The return type is implicitly @Owner

Object getValue(){

return value;
}

}

...

@Shared Foo aShared = new Foo();
@Local Foo bLocal = new Foo();

aShared.value = new @Local Object(); //Not OK, value is @Shared
bLocal.value = new @Shared Object(); //Not OK, value is @Local

Loci cannot guarantee the “actual” thread-locality of any @ThreadSafe
type6. Therefore, Loci cannot determine the inherited thread-locality of any
occurrence of @Owner types which are enclosed by a @ThreadSafe object.
Imagine that we treat @ThreadSafe as @Shared and @Local, which means
that all @Owner variables enclosed by a @ThreadSafe instance are @Thread-
Safe, this makes the following program legal, despite leading to a serious
leak.

class B{
Object value; //value is implicitly @Owner

}

@Shared B b = ...; //b.value should be @Shared

@ThreadSafe B c = b; //if we suppose that c.value is @ThreadSafe

c.value = new @Local Object(); //Leak!

To solve this, we follow the same path as wildcards in Java [4]. A wildcard
in generics is a readable but not writable property:

class Cell{
Object value;

void set(Object t){...}
Object read(){...}

}

...

@Shared Cell b = ...;

@ThreadSafe Cell c=b;//Java(as well as Loci) loses type information

@ThreadSafe Object b = c.read(); //OK

b.value = new @Shared Object(); //OK
c.value = new @Local Object(); //value is not writable
c.set(new Object());//Is not OK

6At run time, everything is either @Shared or @Local.

10

A similar solution was suggested by Lu et al. [17] for their “Dynamic
Exposure”, for preventing exposing of an object by downgrading its dynamic
ownership [17].

2.3.5 Arrays and Generics

Loci requires arrays to have the same thread-locality as their elements.
Therefore, you can never have an array of mixed thread-locality7. The
reason why mixed thread-locality is not supported is purely technical and
slightly subtle. Assume @Shared class A and that we allow @Local A[] f.
Now store f in a @Local Object and then downcast it to a @Local Object[]
f2, all legal operations in a system that mimics Java. Now, there is no way
of telling whether the elements of f2 are shared or thread-local, since there
is no thread-locality information for objects at run-time. An alternative
design would be to use special annotations for arrays but this departs from
standard Java subtyping—@Shared Object would not be the supertype of
all shared objects, etc.—which would break many patterns in existing code.

For the system to remain simple and minimal, we chose to ban the cre-
ation of arrays with different thread-locality than their elements. A simple
proxy object that wraps either the array or each element in the array can
easily solve the problem.

Extending Loci to fully support generics was one of our most import-
ant contributions, listed as C1 in Section 1.2. In generics annotations are
bounded similar to how types are bounded by the extends clause.

class A<@ThreadSafe T> {}
class B<@Shared K> {}

The type parameter T in class A is bounded by a @ThreadSafe Object,
which means we can pass any thread-locality. However, class B only accepts
@Shared instances as its type argument.

If a bound on annotations is not explicitly defined, the annotation on
the (possibly implicit) upper class bound is used.

class A<T extends @ThreadSafe Object> {}
class B<K extends @Shared Object> {}

We can pass any thread-locality to T, as it is bounded by a @ThreadSafe
Object. However we can only pass @Shared type argument to K.

2.3.6 Throwable and Java’s Thread API

In Loci, exceptions are always thread-local. The class java.lang.Throwable,
which is the common superclass of all errors and exceptions in Java, has been

7For example, a @Shared array of @Local elements.

11

annotated @Local, meaning it can only be used to create thread-local in-
stances. If we want to use exceptions to return shared values from a deeply
nested stack, you can still do so in a shared field.

The java.lang.Thread is a @Shared class and java.lang.Runnable is
a @Shared interface. This is natural, as instances of the Thread class are
always shared between two threads: the creating thread and the thread it
represents [22].

2.4 Loci Through an Example

In this section, we run Loci on a simple example from the RayTracer Bench-
mark [3]8.

The design of RayTracer suggests us that we can annotate all the classes
as @Local, except Barrier and TournamentBarrier which were annotated
@Shared. The two shared classes are responsible to keep the running threads
synchronized. The array of threads contains threads that start thread-local
computations.

1 /**

2 * Barrier instances are always @Shared

3 */

4 @Shared public abstract class Barrier {
5 ...

6 }

7
8 /**

9 * RayTracer instances are always @Local

10 */

11 @Local public class RayTracer {
12 ...

13 }

14
15 /**

16 * Since this class extends RayTracer,

17 * it is implicitly @Local.

18 * This class was implementing

19 * Runnable, but since it is @Local it

20 * cannot implement a @Shared interface

21 */

22 class RayTracerRunner extends RayTracer{
23 Barrier br; //Since Barrier is @Shared, its

24 //instances are always @Shared

25 ...

26 public void run(){...} //The core run method
27 }

8This program was one of the benchmarks that we used for evaluating Loci, for more
information see Chapter 5.

12

28
29 ...

30 //Originally it was:

31 //thobjects[i] = new RayTracerRunner(i, wdt, hgt, brl);

32 //but we changed it to:

33 final int j = i;
34 thobjects[i] = new Runnable() {
35 public void run() {
36 RayTracerRunner temp = new RayTracerRunner(j,width,height,br);
37 temp.run();

38 }

39 };

40
41 th[i] = new Thread(thobjects[i]);
42 th[i].start();

Listing 2.2: A short example that shows how Loci performs and constrains
Java programs.

The refactoring made in line 30–39 was necessary, since the Runnable in-
terface is annotated @Shared, while we annotated RayTracerRunner class
as @Local, as it extends the RayTracer which is @Local. Although in the
original version the RayTracerRunner class implemented Runnable inter-
face, we had to refactor it in order to respect the thread-locality of the
RayTracerRunner class. In Loci a @Local class cannot implement a @Shared
class, because of a scenario similar to this:

@Shared interface A{}
@Local class B implements A{} //In Loci, this is invalid

...

B b = new B(); //a thread-local value
A a = b; //Leak! now b is effectively shared through a

Because of that change, the line 31 was no longer valid, Runnable is no
longer a parent of RayTracerRunner. Therefore, we needed to refactor it to
make it valid.

Having looked at the Loci’s logical view of memory, Loci annotations and
core design and seeing an example on how to apply Loci, we now proceed
to show more design decisions to give a clearer picture of the Loci system.

13

14

CHAPTER 3

DESIGN DECISIONS

In a room full of top software
designers, if two agree on the
same thing, that’s a majority.

Bill Curtis

In the previous chapter we introduced Loci 2.0 annotations and basic
design. We now proceed to see more details about the design of the
system and how it differs from the old version of Loci. This chapter
recaps parts of Loci 1.0 to motivate the needs for improvements. and
the design decisions we made in the design of Loci 2.0.

3.1 Path of Evolution from Loci 1.0

Originally, Loci extended Java with two annotations to express thread-
locality [21]. Classes annotated @Shared could only be used to instantiate
shared values while classes annotated @Thread1 could be used to instantiate
both shared and thread-local values. @Thread was taken as the default an-
notation, and it could prove compatibility with legacy Java programs. Loci
1.0 was build on-top of the standard type checker presented in Java 6 and
was therefore not expressive enough to cover all aspects from Java as its
annotations could only appear on declarations. Furthermore, the prototype
implementation of Loci 1.0 was developed as an Eclipse plugin, which never
reached the maturity required to be used in production.

Based on the improvements suggested by evaluating the original Loci,
we designed Loci 2.0. By making use of the upcoming annotation processor

1Loci 1.0 did not have @Local annotation, but @Thread instaed.

15

of Java 8, we were able to support annotations in more places like: object
instantiations, generics and method type parameters.

There were several limitations in the design of Loci 1.0 [21]. For example,
it did not allow annotations on generics and method type parameters, due
to a limitation in Java annotation processor in Java 6 [13, 21, 1]. Loci was
dealing with all type parameters (both on class or method level) as @Shared.

Another limitation with Loci 1.0 was the support of static methods. In
Section 2.3.3 we mentioned that the default annotation in a static context
is @Shared. This caused problems where static methods were used as global
functions. For example in RayTracer benchmark, Vec class was annotated
as @Thread, and it frequently used methods like:

public static Vec sub(Vec a, Vec b) {
return new Vec(a.x - b.x, a.y - b.y, a.z - b.z);
}

Since a and b in the code above would be @Shared by default from being
in a static context, no thread-local vectors are precluded from using this
purely functional method [21].

Equals method was also having problems, since in a @Thread class, the
type of this was @Owner. Therefore we could only compare objects living
in the same heap(let).

To address those problems, we designed Loci 2.0, which we believe is
more flexible and compatible with plain Java. We also implemented Loci
2.0 using the Checker framework [14, 11] and applied it on more than 50 000
lines of legacy Java code [8, 3]. We found that Loci 2.0 is compatible with
how Java programs are written, the results are shown in Chapter 5.

3.2 Subsumption and Generics

Type annotations on generics suffer from the same problems as arrays—
subsumption to Object allows forgetting any parameterized thread-locality
at the type level. Absence of run-time type information further precludes
downcasting. Thus, type arguments’ thread-localities must be the same as
the type parameter boundaries in Loci, unless their classes have manifest
thread-locality.

class A<T extends @Shared Object>{}

The above example denotes a flexible class which takes a shared instance as
a type parameter.

class Pair<T extends Object> {
T fst;

T snd;

}

16

Pair<Object> a; //a shared pair of thread-safe objects

Pair<@Shared Object> b; //invalid

Pair<@Local Object> c; //invalid

The above example takes a @ThreadSafe type parameter, which means
T can hold both @Local and @Shared instances. However, there is no way
of specifying a shared pair of non-@ThreadSafe objects except expressly
bounding T by @Local Object or by @Shared Object. The reason behind
this restriction was to prevent a leak from downcasting to happen, consider
this example (which is invalid in Loci):

class Leaky<T extends Object>{
T value;

}

Leaky<@ThreadSafe Object> a = ...;

Object b = a;

Leaky<@Shared Object> c =

(Leaky<@Shared Object>) a; //Invalid, as this might lead to leak!

In our design, the last line is invalid as it might lead to a leak by storing a
thread-local data in a.value and retrieving it in c.value as a shared data:

a.value = new @Local Object();
@Shared Object leak = b.value; //Leak!

Loci does not allow annotations on a type argument, unless:

1. It is the same as the annotation on the type argument’s class, e.g. Ex-
ception is @Local, thus Pair<Exception> == Pair<@Local Exception>,
or;

2. It matches the annotation on the type parameter. e.g. Pair<Object>
== Pair<@ThreadSafe Object>.

As we mentioned above, generics suffer from the same problems as arrays
when downcasting, consider this example:

@Local class Cell<T extends Object>{
//equivalent to T extends @ThreadSafe Object

T f;

}

Cell<Thread> c;

@Local Object o = c;

Cell c2 = (Cell) o;

c2.f = new Exception();
//c.f now contains @Local object, which can lead to leak!

@Shared Object = c.f; //Leak!

17

To prevent this, Loci reports a warning whenever it sees a downcasting
or an assignment that goes from an instance with less type arguments to an
instance with more type arguments, unless the annotations on the missing
type arguments are predictable (i.e either @Local or @Shared)2.

class A<T extends Object>{...}
class B<K extends Object, T extends Object> extends A<T>{...}
class C<K extends @Local Object, T extends Object> extends A<T>{
...

}

A<Exception> a;

B<Exception, Exception> b

= (B<Exception, Exception>) a; //Produces a warning

C<Exception, Exception> c

= (C<Exception, Exception>) a; //OK, K is always @Local

Implementing equals method for the classes with uncertain type para-
meters can be problematic, since it takes a @ThreadSafe Object as a para-
meter, which means we need to downcast the parameter to retrieve the actual
data type. Fortunately there is a way to safely implement the method, by
doing something similar to:

1 @Local public class Cell<T, K>{
2 T t;

3 K k;

4 public boolean equals(@ThreadSafe Object obj){
5 //Cell<T, K> temp = (Cell<T, K>) obj; produces a warning

6 Cell<?, ?> temp = (Cell<?, ?>) obj; //It is OK

7 return this.t.equals(temp.t) &&
8 this.k.equals.(temp.k);
9 }

10 }

The reason why line 6 is allowed is that in Java wildcards are read-only
properties [4]. Therefore, we can never write into K and T through temp
and as for reading Loci always preserves thread-locality of the two type
parameters as they are both @ThreadSafe—they are bound by Object and
have no explicit annotation.

3.3 Changing Class Defaults

In the first version of Loci, classes defaulted to @Shared as a way to give a
sound Loci semantics to legacy Java code. This default, however, leads to
“false negatives”—thread-local values considered shared, since most classes
actually instantiate values that are safe to use as thread-locals [21]. An-
other unfortunate side-effect on new code is the higher annotation overhead

2Cell is considered as Cell<Object>

18

on classes to explicitly make them @Thread. Thus, changing the default for
classes from @Shared to something more desirable was one of our high pri-
ority contributions (listed as C3 in Section 1.2). In Loci 2.0, classes defaults
to be “flexible classes”. A flexible class can be subclassed as a @Local, a
@Shared or a flexible class. Also, it can be instantiated as @Shared and
@Local. Thus, unless a programmer explicitly annotates a class @Thread or
@Shared, it retains maximal flexibility in usage.

The big hurdle of in switching classes from @Shared to flexible as a
default is that not all legacy Java classes are valid flexible classes. As a
consequence, we had to manually flag certain classes in the JDK and the
libraries of our case studies as @Shared, which was made using the built-in
“Astub” utility of the checker framework, see Section 4.2.

This change helped Loci 2.0 to require fewer annotations than the pre-
vious version. This can be noticed in the comparison between annotating
RayTracer in Loci 1.0 and 2.0 (Chapter 5). Our version needed less annota-
tions (22 vs 15).

3.4 Locality Polymorphic Methods

In Loci, code in a static context is considered to operate in the shared
heap since static fields and methods and classes are global entities that are
accessible by any thread. Consider the following class:

@Local class Foo {
static Object f;
static {
@Shared Object x = new Object();
f = x; // OK, f is implicitly @Shared

}

static Object id(Object o1) {
return o1;
}

static Foo fooId(Foo o2) {
return o2;
}

}

Listing 3.1: Shows how types within a static context are treated in Loci.

Instances of flexible classes are implicitly @Shared in static contexts.
Therefore, the id(Object o1) method in the Listing 3.1 accepts a @Shared
parameter and returns a @Shared type. Typing classic functions such as id
or max are long-standing problems for Loci’s designers. In Loci 1.0 there
was no good way for implementing it, as it lacked support for generics, the
only way was to have two identical methods with different thread-locality:

public @Thread Object threadId(@Thread Object a){return a;}
public @Shared Object sharedId(@Shared Object a){return a;}

19

which of course destroys polymorphism and forces code duplication.
Using generics, Loci 2.0 allows merging the above two methods in a

straightforward fashion:

static <T extends @ThreadSafe Object> T id(T o) { return o; }

Sadly, however, the above strategy is not problem-free. Notably, the
method takes a @ThreadSafe parameter and returns a @ThreadSafe type,
which means that the method effectively loses thread-locality. It would
be desirable to retain it, i.e., pass in an argument with a certain thread-
locality and get a type with the same thread-locality back. For example
when performing the binarySearch using Arrays class, we pass an array
with a certain thread-locality and expect an element with the same thread-
locality. Therefore, we introduced an existential annotation called @X that
can only appear on method type parameters. In this setting, the existential
annotation means that the thread-locality is unknown, and must therefore
be treated conservatively (same constraints as @ThreadSafe). Using exist-
entials, the id() method can be re-written as follows:

static <@X T extends Object> T id(T o) { return o; }

When a method is called, the existential parameters are bound implicitly
to the thread-locality of the arguments. For example, if id() is called with
a @Shared parameter, @X is bound to @Shared and consequently, the return
type is also @Shared. For @Local arguments, we get a @Local type back in
the same way. @X annotations can be given unique identifiers, to support
methods with several parameters with different unknown annotations.

<@X(1) T extends Object, @X(2) B extends Object> T m(T a, B b){
return b; // Illegal @X(2) != @X(1)
return a; // OK
}

Listing 3.2: A method with more than one @X annotations

In the above example, B and T may or may not have the same thread-
locality. Therefore, Loci disallows assignment between them. In the obvious
way, we can also require two parameters to have the same thread-locality
with possibly different types:

<@X T extends Object, @X B extends Object> @X Object m(T o1, B o2) {
if (random) return o1; else return o2; // OK
}

Listing 3.3: Two method type parameters that have the same thread-locality

3.5 Annotating Common Methods

Every valid Java class has the methods equals and clone, either through
defining them itself, or by inheriting them from Object. It is important

20

that Loci can be used with these two methods, especially equals as many
programming patterns in Java rely on structural equality tests.

In this section, we briefly discuss the typing of these methods in Loci
2.03.

3.5.1 The Equals Method

Loci 1.0 did not have a flexible annotation like @ThreadSafe and therefore,
could only allow equality tests between two shared objects or two thread-
local objects [21]. This is limiting, as lifting equality over identity makes it
possible for a shared object to be equivalent to a thread-local one, and vice
versa.

With the addition of the @ThreadSafe annotation in Loci 2.0, the equals
method can be typed in a more flexible way which allows test between
objects with different thread-locality. (This is item C4 in our contributions
list, in Section 1.2.) The resulting signature in Object is:

public boolean equals(@ThreadSafe Object that){...}

Notably, due to the defaults, the @ThreadSafe annotation is not even
necessary (it will be elaborated in as the default), and the flexible equality
comparison falls out automatically.

3.5.2 The Clone Method

The clone() method’s return type is effectively @Owner which means every
instance clones to an instance with the same thread locality of the original,
and for having cross thread-locality cloning we have to have additional meth-
ods4.

It should be safe to assign a @Local cloned instance to a @Shared vari-
able or vice versa, although the type system currently prevents thisLoci.
A properly cloned instance should be a freshly created instance which has
not been assigned to any external variable or field. Therefore, assigning the
result of a proper, deep clone to either a @Local or a @Shared variable does
not cause a thread-locality violations. However, since clone methods in Java
must be written manually by the programmer, there are no guarantees as to
what is returned form a clone method, and consequently, Loci cannot rely
on their proper implementation.

We presented the design of Loci 2.0, now it is time to proceed to presenting
the Loci plugin, to give a clearer view of the Loci system.

3Although the Object class has 11 methods, we need to care about equals and clone
methods only, because these two methods are the only methods in this class with types
from flexible classes in their signatures.

4They are possibly identical to the actual clone() method with different annotations.

21

22

CHAPTER 4

THE LOCI TOOL

It is better to do the right
problem the wrong way than the
wrong problem the right way.

Richard Hamming

The previous chapters gave a detailed introduction to thread-locality
and the design of our system, now is the time to see Loci in action by
introducing the compiler plugin that we have implemented. The chapter
starts with a brief introduction to JSR 308 and the Checker framework
and then presents the Loci compiler plugin and the known bugs and
limitations in the current release of Loci. This chapter is concerned
with our fifth contribution in the list in Section 1.2.

4.1 JSR 308

Java has a limited support for metadata annotations since version 5. The
annotation system is however not expressive enough to allow annotation on
all Java features. For example, it does not support generics or annotations
on class instantiations. To overcome this limitation, JSR 308—“annotations
anywhere”—has been suggested and approved. JSR 308 adds support for
annotation on, for example, generic type arguments (e.g. List<@Local
Object>) [6]. This JSR is planned to be part of OpenJDK 81. There is
an early access release of the type annotations compiler which can be used
with the current version of Java (or even OpenJDK 7) and it is freely avail-
able for downloading.

1It was planned to be part of OpenJDK 7 [13] but was postponed to OpenJDK 8 [5].

23

Using the JSR 308 compiler does not break backward compatibility of
Java code which makes it possible to gain the benefits of type annotations
while working with people who are using other versions of Java, such as Java
6, 5 or even 4.

We decided to use the JSR 308 compiler for implementing Loci rather
than relying on a specific front end or other syntactic extension to Java
which would require additions to developers’ Java tool chains.

As an aside, Java Specification Requests, are the actual descriptions of
proposed and final specifications for the Java platform. JSRs are reviewed
by the Java Community Process and made public before a final release of a
specification. The Java Community Process is a formalized process estab-
lished in 1998 that allows interested parties to get involved in the definition
of future versions and features of the Java platform.

4.2 The Checker Framework

The Checker framework is a framework based on the JSR 308 type annota-
tions compiler. It provides several checkers that can be plugged into the
compiler on-demand, like the “Nullness Checker” for non-null types and the
Javari Checker for read-only references among others [14, 11]. In addition
to a set of default checkers the framework also enables developers to build
custom checkers on top of the framework quite easily. The implementation
of Loci consists of three parts, the thread-locality checker, the annotator
and the astub utility, described below.

The Thread-Locality Checker

The Checker framework provides a base visitor class called BaseTypeVisitor,
which follows the visitor design pattern and type-checks each node of a
source files’s Abstract Syntax Tree (AST) [14]. This class reports type viol-
ations in terms of error messages or warnings depending on the desired se-
mantics. This is a key class of the type checking functionality of the system
and is intended to be extended by plugin developers. Indeed, the central
class LociVisitor in the Loci implementation extends BaseTypeVisitor
and provides specialisations for most of its methods to implement the Loci
semantics.

The Annotator

The Checker framework provides three different classes to implicitly annot-
ate a source code. Loci extends them as follows:

LociAnnotatedTypeFactory extends AnnotatedTypeFactory to process
@Owner and @X annotations.

24

LociTreeAnnotator extends TreeAnnotator to implicitly annotate the
types upon declarations; and

LociTypeAnnotator extends TypeAnnotator to implicitly annotate the
types in other places.

The last two classes are key components in Loci to lower the needed an-
notations overhead, because these two enable Loci to infer annotations when
possible.

The Astub Utility

Astub is a utility program for annotating the Java classes without changing
the actual class files, which is very handy for annotating core classes of the
system which are not accessible for security reasons. The tool reads the
annotations from a plain-text file which contains the Java class interface
declarations with annotations that are “overlay-ed” on the actual classes.
In Loci we have used Astub to flag shared classes in the JavaSE library by
annotating them as @Shared, which is its intended use. A shortcoming of the
Astub utility is its lack of support for annotations on generics, method type
parameters and inner classes. As was discussed Section 5.1.1, this limitation
caused a few problems for the Loci tool.

Loci processes one AST node at a time, the order depends on the javac
compiler. It first checks whether the node is already annotated. If not,
Loci annotates the unannotated nodes when possible by either inferring the
proper annotation from the context or by using the Astub utility program.
Once the node is annotated, Loci tries to process @Owner and @X annotations,
as mentioned in 2.3.1 and 2.3.3 respectively. Last, Loci checks the node for
thread-locality violations and prints error messages upon violations. This
process is shown in detail in Figure 4.1.

4.3 Installing and Running Loci

Using the Checker framework and following the JSR 308 specifications we
created a checker as a javac plugin. Our Loci plugin is free and open source,
and available online: http://www.it.uu.se/research/upmarc/loci. The
tool is easily installable with few dependencies, and as a pure Java command
line tool, is Operating System and IDE independent.

Installing Loci is as easy as putting the distributed JAR file in your
classpath environment variable once you have correctly installed the JSR
308 type annotator compiler. Loci can also be used as a Maven2 plugin,
with ANT build script or different IDEs [22]. To apply Loci on your source
code you have to provide Loci as a compiler processor to javac:
$ javac -processor loci.LociChecker *.java

25

http://www.it.uu.se/research/upmarc/loci

Source code

Visit AST nodes
(LociVisitor)

Annotated
node

Implicitly annotate
the node

JavaSE
node

Infer the annotation
if possible, or leave it

unannotated
(LociTypeAnnotator &
LociTreeAnnotator)

Call Astub utility
(Astub program)

Process @Owner
and @X

(LociAnnotatedTypeFactory)

Node violates
thread-locality

Check the AST
Node

(LociVisitor)

Print an
error message

More
nodes

No

Yes

Yes

No

No

Yes

No

Yes

Figure 4.1: How Loci processes and checks source code.

26

Loci is designed in a way to be compatible with ordinary Java programs,
and programs written for Loci can also be run and compiled with ordinary
JVM and javac. Note that it is possible to compile and run programs
written for Loci with Java 5 and up, if the annotations were put inside
comments, like: /*@Local*/ Object b.

4.4 Known Bugs and Limitations

At the time of writing, Loci still has a small number of known bugs. They
stem either from the Loci code base itself or from the Checker framework
and affecting Loci. In this section we explain them, and offer a way to avoid
them where possible.

4.4.1 Implementing Parameterized Interfaces

When implementing a parameterized type (e.g. Comparable), if we provide
the type arguments, we need to provide their annotations too, otherwise
Loci rejects the code. For example, this code produces an error:

1 @Local class A {}
2 class B extends A implements Comparable {
3 public Comparable getValue() {
4 return new Test();
5 }

6 }

Loci rejects the line number 5 in the above example with the following error
message:

Incompatible types:

return new Test();
ˆ

found: B implements Comparable<@ThreadSafe B>
required: Comparable

The reason for this bug is that Loci tries to infer the annotations on un-
annotated classes (and interfaces) from the extends and implements clause.
In the above example, when Loci looks at the implements clause, it does not
know the thread-locality of B yet, which happens to be the type argument
for Comparable too. The error goes away, however, if we supply an explicit
annotation to the type argument of the parametric superclass:

@Local class A {}

class B extends A implements Comparable<@Local B> {
public Comparable getValue() {
return new Test(); // OK
}

}

27

4.4.2 Anonymous Classes Need Explicit Annotations

Anonymous classes that are implicitly @Shared or @Local will provide false
error reports that go away if the correct annotation is provided explicitly.
For example:

1 abstract class A { void m(); }
2
3 @Shared class B {
4 Object method() {

5 return null;
6 }

7
8 void m1(){
9 A a = new @Shared A() {

10 public void m() {
11 Object b = method();

12 }

13 }

14 }

15 }

At line number 9 above, we need to put the @Shared annotation expli-
citly, even though Loci should elaborate it in automatically as the line is
inside the scope of a @Shared class. If not, the line number 11 is rejected
with the following error:

Incompatible types:

Object b = method();

ˆ

found: @Owner Object

required: @Shared Object

The reason for this bug is that the checker framework starts to check the
typing of line number 9 before inferring the annotation of the anonymous
class.

4.4.3 @Owner Causes Problems in Subclassing

When a non-flexible class inherits an @Owner field, return type or parameter
from its flexible parent, Loci fails to convert the @Owner to match the an-
notation of the non-flexible class. Suppose we have these two classes:

1 class A { // A flexible class
2 void method(Object b) {...} // The annotation on b is @Owner
3 }

4 @Shared class B extends A {
5 void method(Object b) { // b is implicitly @Shared
6 super.method(b);
7 }

8 }

28

On line number 7, Loci reports an error saying:

Incompatible types:

super.method(b);
ˆ

found: @Shared Object

required: @Owner Object

We believe that this is a bug inherited from the Checker framework.

4.4.4 Miscalculating Arrays of Type Arguments

As we mentioned in Section 2.3.5, Loci arrays always have the same thread-
locality as their elements. Consider the following:

1 class B<T> {
2 T[] method() {...}

3 }

4
5 B<Exception> b = new B<Exception>();
6 Exception[] array = b.method();

Line number 6 produces an error:

Incompatible types:

Exception[] array = b.method();

ˆ

found: @Local Exception @ThreadSafe []

required: @Local Exception @Local []

Processing type parameters in the Checker framework is completely auto-
matic and there is no way to program it. Therefore, when Loci reaches
the line number 6, the Checker framework substitues the annotation on the
return type of the method() to match the annotation given in the line 5.
Unfortuantely, Loci cannot force the checker framework to change both the
annotation on the array type and its elements during this process, and thus
the problem occurs.

4.4.5 Incorrect Inference of Method Type Arguments

This is a bug from the Checker framework, and it is already patched but
have not been pushed to a stable version yet. Once the patch is released,
Loci will work correctly in this respect2.

If a method type parameter which has @X annotation appears on both
method parameter and return type, Loci fails to find the correct thread-
locality:

1 class A{
2 public static <@X T, @X(2) K> T badMethod(T t, K k){...}

2Bug report: http://code.google.com/p/checker-framework/issues/detail?id=93

29

http://code.google.com/p/checker-framework/issues/detail?id=93

3 }

4
5 @Local Object a = ...;

6 @Shared Object b = ...;

7
8 @Local Object c = A.badMethod(a, b);

Although, the line 8 should be accepted but Loci fails to accept it, com-
plaining:

Incompatible types:

@Local Object c = A.badMethod(a, b);

ˆ

found: @Local Object

required: @ThreadSafe Object

Having looked at the Loci tool and its current known bugs, we proceed to see
Loci in action by presenting our results in running Loci on some well-known
Java benchmarks.

30

CHAPTER 5

EVALUATING LOCI

An algorithm must be seen to be
believed.

Donald Knuth

The previous chapters presented the design of Loci 2.0 and the Loci tool
plugin. In this chapter we evaluate our work by running it on several
well-known Java benchmarks from Java Grande [3] and DaCapo [8]
benchmark suites. Then we share the results and conclude them.

5.1 Benchmarking Loci

To evaluate Loci’s type system design, we annotated a number of Java pro-
grams from both Java Grande [3] and Dacapo [8] benchmarks as well as the
Lucene Search library from Apache [2]. In total we annotated 3 programs
and more than 50 000 LOC. Our policy was to select heavily multi-threaded
programs which are used for real-world benchmarking. We focused on the
the pre-Java 5 programs, in our evaluation process, to “guaranty” that Loci
is compatible with them.

The largest code base we annotated was the Lucene searching library
version 2.4.1 which consists of 367 source files many of which defines more
than a single class or interface. Due to the large code base we decided
to annotate only the parts that are reachable from the IndexReader class
which is needed for the Lusearch benchmark from the DaCapo benchmark
suite [8].

To explain the evaluation process, we take an excerpt from the RayTracer
benchmark, and present the same excerpt before benchmarking afterwards.

The original code looked thus:

31

/**

* Barrier instances are always @Shared

*/

@Shared public abstract class Barrier {
...

}

/**

* RayTracer instances are always @Local

*/

@Local public class RayTracer {
...

}

/**

* Since this class extends RayTracer,

* it is implicitly @Local.

* This class was implementing

* Runnable, but since it is @Local it

* cannot implement a @Shared interface

*/

class RayTracerRunner extends RayTracer{
Barrier br; //Since Barrier is @Shared, its

//instances are always @Shared

...

public void run(){...} //The core run method
}

...

//Originally it was:

//thobjects[i] = new RayTracerRunner(i, width, height, br);

//but we changed it to:

final int j = i; // This step is needed to access the index in
// the ‘‘thobjects[i]’’ scope.

thobjects[i] = new Runnable() {
public void run() {
RayTracerRunner temp = new RayTracerRunner(j,width,height,br);
temp.run();

}

};

th[i] = new Thread(thobjects[i]);
th[i].start();

Listing 5.1: The refactored Raytracer program.

32

/**

* This class is responsible to keep the running

* threads synchronized.

*/

public abstract class Barrier {
...

}

/**

* This class creates an array of RayTracerRunner.

* Then, starts the array items (threads).

*/

public class RayTracer {
...

}

/**

* The run method of this class, traces the different

* objects in the ‘‘world’’ and produces the image.

*/

class RayTracerRunner extends RayTracer implements Runnable{
Barrier br;

...

public void run(){...}
}

...

thobjects[i] = new RayTracerRunner(i,width,height,br);
th[i] = new Thread(thobjects[i]);
th[i].start();

Listing 5.2: An excerpt of the RayTracer benchmark.

If we look at the original code from RayTracer Benchmark and the one
that we have annotated (and refactored) we can notice one major difference.
In the original version RayTracerRunner implements Runnable but in the
modified version it does not. The reason we need to do this is, RayTracer-
Runner is @Local by design and Runnable is @Shared by design, so the
implementing Runnable would not be sound and result in a compile error.

After naively annotating the program to reflect the design intents, Loci
(correctly) rejected it, requiring us to refactor it slightly. This is the only
refactoring we have done in our benchmarking on any of the programs.

The Lucene Search Library

We annotated ≈ 46 KLOC of the Lucene library. This corresponds to two
thirds of the entire library. Our impression of this undertaking were that
most of the time a single annotation on the class level is enough to express
the intended behaviour with respect to thread-locality. Annotations on fields,

33

Place @Shared @Local @ThreadSafe Total

Class and 23 45 68
Interface

Return 13 20 27 60

Parameter 5 73 27 105

Variable 10 110 52 172

Annotation/KLOC

Total 51 248 106 ≈ 9

NOC/NOI

243 classes and
13 interfaces

LOC

45853 lines of code

Table 5.1: The result of annotating the Lucene Search Library.

variables, etc. were much less frequent. We believe that this suggests that
our design decisions help in reducing of annotations needed per line of code
with the desired semantics. In average we needed ≈ 9 annotations/KLOC.
We believe that this is a very small addition for avoiding thread-locality
violations. Table 5.1 shows the annotations we have added for Lucene Search
library in detail.

For pragmatic reasons, Loci allows methods to be annotated as @Man-
uallyVerified. The annotation is to be used sparingly, if at all. @Man-
uallyVerified forces Loci to skip checking the body of a method. However,
Loci still checks the return type and the parameters of the method. Due to
(mostly) heavy use of pre-Java 5 collections, we were forced to use @Man-
uallyVerified heavily in this library. This annotation is meant to be used
very carefully as it constitutes a backdoor that can cause unsoundness in
the system. In the Loci implementation, it is used only in a single place in
the ThreadLocal as this class is part of Loci’s core semantics.

The use of @ManuallyVerified in Lucene library was due to existing
bugs either in Loci or in the “Astub” utility (see Section 5.1.1). In total we
had 22 occurrences of this annotation. 15 of them were because of existing
bugs in Loci: 2 of them because of the bug mentioned in Section 4.4.5,
another 2 because of the bug mentioned in Section 4.4.3 and the other 11
were because of the bug mentioned in Section 4.4.1. Fixing these bugs
eliminates the need of these @ManuallyVerified annotations.

Our experience with Lucene library further guided our design, for in-
stance: in generics, annotations on type parameters were the same as the
types, unless they were explicitly annotated. But this is no longer correct,
as Loci can have mixed thread-locality generics, more on this can be found
in Section 2.3.5, or before it was valid to write into an @Owner field of a

34

Place @Local @Shared Total

Class 10 1 11

Variable 2 2 4

Annotation/KLOC

Total 12 3 10.45

NOC/NOI

15 classes

LOC

1424 lines of code

Table 5.2: The result of annotating the RayTracer benchmark.

@ThreadSafe instance, but this is no longer allowed due to the reasons men-
tioned in Section 2.3.4. It also suggested us a huge amount of bug fixes.
And we implemented most of the design suggestions we gained from this
library in the initial version of the Loci tool release.

The RayTracer Benchmark

The ray tracer benchmark is a part of the Java Grande benchmark suite. It
is a multi-threaded ray tracing program of 1436 LOC. Capturing its thread-
local behaviour was straightforward and only required a minor refactoring.
The ray tracer consists of 17 classes needing only 15 annotations in total. Of
these annotations, 11 were on class-level, Table 5.2 shows the annotations
we have added for the RayTracer benchmark in detail.

In the initial Loci work, Wrigstad et al. benchmarked the RayTracer
program [21], and their result was quite similar to ours. The main differ-
ences between the two are due to changed defaults; in Loci 1.0 classes were
implicitly shared unless they were explicitly annotated @Thread, but in Loci
2.0 classes default to flexible. Overall, Loci 2.0 required fewer annotations
than Loci 1.0 which needed 21 annotations. On class level, Loci 2.0 needs
two shared annotations whereas Loci 1.0 needs none. Another difference
between the two was that Loci 2.0 needed annotations on classes (1 @Shared
and 10 @Local) and variables (2 @Shared and 2 @Local) only, while Loci
1.0 needed annotations on classes (16 @Thread), fields (1 @Shared), para-
meters (1 @Shared), return types (1 @Shared) and variables (1 @Shared and
1 @Thread). As a side note, in our RayTracer benchmark, we could have
safely made the classes annotated @Thread in Loci 1.0 flexible classes, but
as the use of these classes suggests that they are strictly thread-local, we
preferred to annotate them @Local.

35

Place @Local @Shared @ThreadSafe Total

Class 1 1 2

Variable 0 0 3 3

Parameter 0 0 1 1

Annotation/KLOC

Total 1 1 4 18.69

NOC/NOI

4 classes

LOC

321 lines of code

Table 5.3: The result of annotating the Lusearch benchmark.

The Lusearch Benchmark

The last program we annotated was the Lusearch benchmark from the Da-
Capo benchmark suite [8] of only 321 LOC. Sadly the results from this class
are not valid for the latest release of Loci, as this class heavily depends on
Lucene library which has not been updated due to the large code base. The
results of this class can be found in Table 5.3.

5.1.1 Observations

Unlike Lusearch and RayTracer, annotating Lucene library was rather diffi-
cult, because the large code base was a bit hard to analyze and understand.
We needed to revise and re-annotate already annotated parts of the library
several times. This was important to keep the different parts of the library
compatible with each other, so they altogether pass Loci. This is not very
surprising, as it is at least an order of magnitude bigger than the other
benchmark programs.

To make our benchmarking accurate, we needed to use an annotated
version of JavaSE, therefore, we annotated the JavaSE 6 classes based on
the results of a simple program analysis carried out by Filip Pizlo that
checked whether a class could safely be used as a thread-local value. The
annotation was automated by a small script that put a @Shared annotation
on all values that could not be safely used as thread-local values. This
crude level of annotations was manually complemented in some cases, mostly
utility methods in utility classes such as Arrays, Collections, and System.
Overall we manually annotated 38 methods from 14 different classes. Our
annotated version of JDK 6 classes are already in the Loci tool distribution
and can be used with any other projects that use Loci.

36

Limitations in “Astub” Utility Program

The utility program that we created for annotating JDK classes was relying
on a utility program called “Astub” from the Checker framework. Unfor-
tunately the “Astub” utility program lacks some features, for example, it
does not allow annotations on inner-classes and type parameters. This dra-
matically limited our capabilities of externally adding annotations to JDK
classes, which forced us to use @ManuallyVerified instead of annotating
the proper classes or type parameters when needed. This problem would go
away if we annotate the actual source files of the Java classes.

5.2 Conclusions

In conclusion Loci seems to be a useful tool for programmers to write correct
programs with respect to thread-locality. Furthermore, Loci seems to be
compatible with how Java programs are written and only require a relatively
small number of extra annotations in the program code.

It should be noted that the major part of the evaluation was conducted
before “all” of the design bugs were weeded out. In the RayTracer and
Lusearch benchmarks we could easily and accurately analyze the program
and discover the thread-locality manually, however that was not the case
in the Lucene Search library due to the large code base. This may have
negative effect on the accuracy of our evaluation process.

37

38

CHAPTER 6

CONCLUSION

We can only see a short distance
ahead, but we can see plenty
there that needs to be done.

Alan Turing

The previous chapters presented our extensions to Loci system, and the
tool that we have designed and how the tool interacts with real-world
Java programs. In this final chapter we conclude our work and suggest
possible improvements.

6.1 Results

In this thesis we extended a simple type system for expressing thread-local
data in Java and Java-like languages. We introduced Loci 2.0 and showed
its semantics through a number of examples and discussed design decisions.
We also discussed the command-line tool that implements the type system
which was used in the practical evaluation. The tool was constructed for
this thesis and is available online at http://java.net/projects/loci/
downloads/directory/Loci-0.1.

We believe that the number of annotations/LOC that Loci requires is
reasonably low and that the buy-in for “porting” legacy Java code is rel-
atively cheap. Also, using Loci required no substantial rewrites and only a
small number of simple refactorings. In its current design, Loci supports all
Java constructs, but there is still room for improvement like adding a better
support for cloning or moving thread-local values across threads to improve
the handling of producer-consumer scenarios. Notably, no such scenarios
were found in the evaluation process.

39

http://java.net/projects/loci/downloads/directory/Loci-0.1
http://java.net/projects/loci/downloads/directory/Loci-0.1

Another interesting notion would be to support mediating a value from
@Local to @Shared or the other way around.

The core idea behind keeping annotation overhead at a minimum in Loci
is the class-level annotations and the choice of defaults. We are happy to
report that in most cases, a single class-level annotation was enough to cap-
ture the desired semantics. Also, @Local was more used than @Shared on
class level in our practical evaluation, which reflects our initial understand-
ings and also the results from Wrigstad et al. [21] which says that most of
the classes can be annotated @Thread1.

With respect to return types, @ThreadSafe was the most used annota-
tion, @Local the second and @Shared the last. The high number of @Thread-
Safe annotations was because the code was written for Java 1.4 and not
using generics, and because of the limitation in the “Astub” utility program
in the Checker framework which is mentioned in n Section 5.1.1.

As for parameters @Local was used far more than @ThreadSafe which
was used more than @Shared. This is encouraging as most classes are not
@Shared. On the variable level, the ranking was @Local, @ThreadSafe,
@Shared. @Shared was only used 12 times (in relation to @Local, which was
used 73 times, i.e., 6 times as often).

6.2 Future work

Loci still has room for improvement. Transferring values across threads
without copying is an important next goal. This might be possible by ap-
plying a Scala-like uniqueness capabilities [16] or external uniqueness [10].
The major problem is finding a system that imposes as few extra annotations
as possible on the programmer.

Modulo objects which incorporate global variables in its structure, clon-
ing an object should return a reference which would be safe to treat either
as @Local or @Shared. Currently, objects that should be clonable to both
@Local and @Shared needs two different methods, which are completely the
same modulo annotations. Introducing some kind of unique or free value
might be beneficial both for flexible cloning and for transfer.

Contributing to Loci

The Loci command-line tool is open source and anyone who wishes can grab
the source code and study it. In fact we welcome all contributions and
suggestions. For more information and the latest updates please visit this
website: http://www.it.uu.se/research/upmarc/loci.

1@Thread in Wrigstad et al. [21] on classes is identical to flexible classes in Loci 2.0.

40

http://www.it.uu.se/research/upmarc/loci

BIBLIOGRAPHY

[1] Annotation processing tool (apt). [Online]. Available: http://
download.oracle.com/javase/6/docs/technotes/guides/apt/index.html

[2] Apache Lucene library. [Online]. Available: http://lucene.apache.org/
java/docs/index.html

[3] The Java Grande Forum Multi-threaded Benchmarks. [Online].
Available: http://www2.epcc.ed.ac.uk/computing/research activities/
java grande/threads/contents.html

[4] Java wildcards. [Online]. Available: http://download.oracle.com/
javase/tutorial/extra/generics/wildcards.html

[5] JDK 7 Features. [Online]. Available: http://www.openjdk.java.net/
projects/jdk7/features/

[6] Locations for annotations in JSR308. [Online].
Available: http://types.cs.washington.edu/jsr308/specification/
java-annotation-design.html#locations-for-annotations

[7] ThreadLocal API. [Online]. Available: http://download.oracle.com/
javase/6/docs/api/java/lang/ThreadLocal.html

[8] S. M. Blackburn, R. Garner, C. Hoffman, K. S. Khan, A. M.and McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, M. Hosking, A.and Jump, H. Lee, J. E. B. Moss,
D. Phansalkar, A.and Stefanović, T. VanDrunen, and B. von Dinck-
lage, D.and Wiedermann, “The DaCapo benchmarks: Java benchmark-
ing development and analysis,” in OOPSLA ’06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-Oriented Program-
ing, Systems, Languages, and Applications. New York, NY, USA:
ACM Press, Oct. 2006, pp. 169–190.

41

http://download.oracle.com/javase/6/docs/technotes/guides/apt/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/apt/index.html
http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/contents.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/threads/contents.html
http://download.oracle.com/javase/tutorial/extra/generics/wildcards.html
http://download.oracle.com/javase/tutorial/extra/generics/wildcards.html
http://www.openjdk.java.net/projects/jdk7/features/
http://www.openjdk.java.net/projects/jdk7/features/
http://types.cs.washington.edu/jsr308/specification/java-annotation-design.html#locations-for-annotations
http://types.cs.washington.edu/jsr308/specification/java-annotation-design.html#locations-for-annotations
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html
http://download.oracle.com/javase/6/docs/api/java/lang/ThreadLocal.html

[9] G. Bracha, “Pluggable type systems,” in OOPSLA04 Workshop on Re-
vival of Dynamic Languages, Vancouver, Canada, 2004.

[10] D. Clarke and T. Wrigstad, “External uniqueness is unique enough,”
in European Conference for Object-Oriented Programming (ECOOP).
Springer-Verlag, 2003, pp. 176–200.

[11] W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu, and T. Schiller, “Build-
ing and using pluggable type-checkers,” in ICSE’11, Proceedings of
the 33rd International Conference on Software Engineering, Waikiki,
Hawaii, USA, May 25–27, 2011.

[12] T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E. Petrank,
and D. Sheinwald, “Thread-local heaps for java,” in Proceedings of
the 3rd international symposium on Memory management, ser. ISMM
’02. New York, NY, USA: ACM, 2002, pp. 76–87. [Online]. Available:
http://doi.acm.org/10.1145/512429.512439

[13] M. Ernst. (2007) Annotations on Java types, JSR308. [Online].
Available: http://www.jcp.org/en/jsr/proposalDetails?id=308

[14] ——. (2008–present) The checker framework: Custom pluggable
types for Java. [Online]. Available: http://types.cs.washington.edu/
checker-framework/

[15] D. Flanagan, Java In A Nutshell, 5th Edition. O’Reilly Media, Inc.,
2005.

[16] P. Haller and M. Odersky, “Capabilities for Uniqueness and
Borrowing,” Tech. Rep., 2009. [Online]. Available: http://lamp.epfl.
ch/∼phaller/capabilities.html

[17] Y. Lu, J. Potter, and J. Xue, “Ownership downgrading for
ownership types,” in Proceedings of the 7th Asian Symposium on
Programming Languages and Systems, ser. APLAS ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 144–160. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10672-9 12

[18] S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and
J. Noble, “JavaCOP: Declarative pluggable types for Java,” ACM
Trans. Program. Lang. Syst., vol. 32, pp. 4:1–4:37, February 2010.
[Online]. Available: http://doi.acm.org/10.1145/1667048.1667049

[19] B. Steensgaard, “Thread-specific heaps for multi-threaded programs,”
in Proceedings of the 2nd international symposium on Memory
management, ser. ISMM ’00. New York, NY, USA: ACM, 2000, pp.
18–24. [Online]. Available: http://doi.acm.org/10.1145/362422.362432

42

http://doi.acm.org/10.1145/512429.512439
http://www.jcp.org/en/jsr/proposalDetails?id=308
http://types.cs.washington.edu/checker-framework/
http://types.cs.washington.edu/checker-framework/
http://lamp.epfl.ch/~phaller/capabilities.html
http://lamp.epfl.ch/~phaller/capabilities.html
http://dx.doi.org/10.1007/978-3-642-10672-9_12
http://doi.acm.org/10.1145/1667048.1667049
http://doi.acm.org/10.1145/362422.362432

[20] B. Weissman, “Performance counters and state sharing annotations:
a unified approach to thread locality,” SIGPLAN Not., vol. 33, pp.
127–138, October 1998. [Online]. Available: http://doi.acm.org/10.
1145/291006.291035

[21] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek, “Loci:
Simple thread-locality for Java,” in Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming, ser.
Genoa. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 445–469.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-03013-0 21

[22] T. Wrigstad and A. Sherwany, Loci 0.1 Manual, 2011. [Online].
Available: http://loci.java.net/manual

43

http://doi.acm.org/10.1145/291006.291035
http://doi.acm.org/10.1145/291006.291035
http://dx.doi.org/10.1007/978-3-642-03013-0_21
http://loci.java.net/manual

	Introduction
	Background
	Thread-Locality
	Pluggable Type Checkers

	Purpose and Goal
	Outline

	Introducing Loci
	Loci's Logical View of Memory
	Annotations
	Integration with Core Java Concepts
	Classes and Types
	Fields and Thread-Locality
	Statics and Thread-Locality
	@Owner and Subtyping
	Arrays and Generics
	Throwable and Java's Thread API

	Loci Through an Example

	Design decisions
	Path of Evolution from Loci 1.0
	Subsumption and Generics
	Changing Class Defaults
	Locality Polymorphic Methods
	Annotating Common Methods
	The Equals Method
	The Clone Method

	The Loci Tool
	JSR 308
	The Checker Framework
	Installing and Running Loci
	Known Bugs and Limitations
	Implementing Parameterized Interfaces
	Anonymous Classes Need Explicit Annotations
	@Owner Causes Problems in Subclassing
	Miscalculating Arrays of Type Arguments
	Incorrect Inference of Method Type Arguments

	Evaluating Loci
	Benchmarking Loci
	Observations

	Conclusions

	Conclusion
	Results
	Future work

	Bibliography

