Ministry of Higher Education and Scientific Research

Salahaddin University / Erbil
College of Engineering Dept. of Software Engineering
$2^{\text {nd }}$ Term Exam 2011-2012

Subject: Compilers
Time: 90 Minutes
Lecturer: Amanj Sherwany
Date: 6 May 2012

The highest obtainable mark is 100, the minimum passing mark is 50
Q1: (16 points)
For each of the following data structures, show how their instances are represented in the memory of a 32-bit machine, state their sizes in bytes, and the possible needed alignments:

- struct element\{char x; int y; double $z ;\}$
- union element\{char x i int y i double $z ;\}$

Q2: (30 points)

Translate the following function to assembly:

```
int factorial(int n) {
    if(n == 0)
        return 1;
    if(n == 1)
            return 1;
    return (n * factorial(n-1));
}
```

The target machine is a 32-bit RISC with 4-byte integers, a stack pointer register SP, a return address register RA, eight general purpose registers R0 to R7, and the following instruction set:

```
goto label
if reg < opnd goto label (==, >=, etc)
move dst, opnd assign opnd to dst
add dst, reg1, opnd2 assign reg1 plus opnd2 to dst
ditto for sub, mul, and, or,
leftshift, etc
load dst, (reg1 + opnd2) read integer from memory at
reg1+opnd2
store (reg1 + opnd1), opnd3 write integer (opnd3) to memory
at reg1+opnd2
set RA to next instruction then
jump to label
jump to the address in RA
```

Each $d s t$ must be a register, and each opnd must be a register or an integer constant. The function call
conventions are that parameters are passed in register $R 0$, the return value is returned in $R 1$, and a function call may destroy any general-purpose register and $R A$. The stack grows from high to low addresses, and $S P$ should always point to the lowest word of the current stack frame.
Apart from the statements and expressions, include the code for setting up the stack frame, storing registers in the stack frame, and fetching registers from the stack frame.

Q3: (30 points)

Translate the following C-code to RTL/quadruples:

```
int multiply(int x, int y){
    int result = 0;
    for(int i = y; i > 0; i--) {
            result += x;
    }
    return result;
}
```


Q 4: (24 points)

For the following intermediate code representation:

- Find the basic blocks (6 points)
- Draw the Control-Flow Graph (CFG) (4 points)
- Calculate the Liveness (LIVEIN and LIVEOUT) for each instruction (10 points)
- Calculate the Liveness (LIVEIN and LIVEOUT) for each basic block (4 points)

I1. $\quad \mathrm{a}:=\mathrm{b}+3$
I2. if $a==10$ goto L1
I3. f := a - b
I4. goto L2
I5. L1: f := a + b
I6. L2: return f

Good Luck

