Kurdistan Regional Government
Ministry of Higher Education \& Scientific Research
University of Salahddin - Hawler
College of Engineering
Software Engineering Dept.

Final Examinations (2011/2012)
Subject: Compilers
Third Year Students
Time allowed: 3 hours
Lecturer: Amanj Sherwany

The highest obtainable mark is 100, the minimum passing mark is 50

Q1/ A: (15 points)

Construct a deterministic finite automaton (DFA) for the following regular expression, knowing that the alphabet consists of the symbols a, b and c.

$$
\mathrm{a}(\mathrm{c}) * \mathrm{~b}, \mathrm{~b} \quad \mathrm{ac}(\mathrm{~b}) * \mathrm{~b}
$$

B: (10 points)

```
struct element{char w; char x; int y; char z;}
```

For the above struct, show how its instances are represented in the memory of a 32-bit machine, state its size in bytes and its alignment, then suggest the best way to rearrange the above struct, so that it consumes less memory.

Q2: (30 points)

Consider the following context-free grammar:

$$
\begin{aligned}
& p_{0} S^{\prime} \rightarrow S \$ \\
& p_{1} S \rightarrow \text { while } E \text { do } S \\
& p_{2} S \rightarrow I \\
& p_{3} E \rightarrow E<\mathrm{x} \\
& p_{4} E \rightarrow \mathrm{x} \\
& p_{5} I \rightarrow x=\text { num }
\end{aligned}
$$

1. Find FIRST and FOLLOW sets for all non-terminals (variables) ($\mathbf{1 0}$ points)
2. Construct the LR(0) DFA. (10 points)
3. Construct SLR decision table. (10 points)

Q3: (20 points)

Translate the following function to assembly:

```
int power(int x, int y){
    if (y == 0)
        return 1;
    else
        return x * power(x, y-1);
}
```

The target machine is a 32-bit RISC with 4-byte integers, a stack pointer register SP, a return address register RA, eight general purpose registers R0 to R7, and the following instruction set:

```
goto label
if reg < opnd goto label (==, >=, etc)
move dst, opnd assign opnd to dst
add dst, reg1, opnd2 assign reg1 plus opnd2 to dst
ditto for sub, mul, and, or,
leftshift, etc
load dst, (reg1 + opnd2) read integer from memory at
reg1+opnd2
store (reg1 + opnd1), opnd3 write integer (opnd3) to memory
at reg1+opnd2
set RA to next instruction then
jump to label
return jump to the address in RA
```

Each $d s t$ must be a register, and each opnd must be a register or an integer constant. The function call conventions are that parameter are passed in registers $R 0, R 1$, the return value is returned in $R 2$, and a function call may destroy any general-purpose register and $R A$. The stack grows from high to low addresses, and $S P$ should always point to the lowest word of the current stack frame.
Apart from the statements and expressions, include the code for setting up the stack frame, storing registers in the stack frame, and fetching registers from the stack frame.

Q 4: (25 points)

For the following intermediate code representation:

- Find the basic blocks (3 points)
- Draw the Control-Flow Graph (CFG) (2 points)
- Calculate the Liveness (LIVEIN and LIVEOUT) for each instruction ($\mathbf{1 5}$ points)
- Allocate each of (b, c, d, f) temporary variables in three registers $(\mathrm{K}=3)$. (5 points)

```
I1. if b == 1 goto L1
I2. b = d + c
I3. L1: b = f + d
I4. c = c + 1
I5. if c == d goto L1
I6. return c
```


Good Luck

