
Kurdistan Regional Government
Ministry of Higher Education & Scientific Research
University of Salahddin – Hawler
College of Engineering
Software Engineering Dept.

Final Examinations (2011/2012)
Subject: Compilers
Third Year Students
Time allowed: 3 hours
Lecturer: Amanj Sherwany

The highest obtainable mark is 100, the minimum passing mark is 50

Q1/ A: (15 points)
Construct a deterministic finite automaton (DFA) for the following regular expression, knowing that
the alphabet consists of the symbols a, b and c.

(a(b*)c) | (ab(c*))

Answer

B: (10 points)
struct element{double w; char x; double y; int z;}

For the above struct, show how its instances are represented in the memory of a 32-bit machine, state
its size in bytes and its alignment, then suggest the best way to rearrange the above struct, so that it
consumes less memory.

Answer
0 8 9 16 24 28 32

w x y z

Size = 32 and alignment = 8

A better way to represent the above struct is:
struct element{double w; double y; char x; int z;}

* * *

1 of 5

S
1 S

2

S
4

S
6

S
3

S
5

a

b

c

c c

b

b
c

Q2/ A: (10 points)
Consider the following context-free grammar G0:

E → E > E | E & E | E = E | (E) | x
1. Assume that (E & E) has the highest priority, (E > E) has the second-highest priority and (E =

E) has the lowest priority. Rewrite G0 to an equivalent G1 which expresses these properties. (5
points)

2. Assume that (> and &) are left-associative and (=) is right-associative. Rewrite G1 to an
equivalent grammar G2 which expresses these properties. (5 points)

Answer

1.
E → E = E | T
T → T > T | F
F → F & F | K
K → (E) | x

2.
E → T = E | T
T → T > F | F
F → F & K | K
K → (E) | x

B: (20 points) For the following context-free grammar:
 S → aA$ | B$
 A → bB | a
 B → c | bAc

1. Find FIRST and FOLLOW sets for all non-terminals (variables) (10 points)
2. Construct LL(1) decision table. (10 points)

Answer
1.
S, A and B are not nuallable
FIRST(S) = {a, b, c}, FIRST(A) = {a, b}, FIRST(B) = {b, c}
FOLLOW(S) = {}, FOLLOW(A) = {c, $}, FOLLOW(B) = {c, $}

2.
a b c $

S S → aA$ S → B$ S → B$

A A → a A → bB

B B → bAc B → c

* * *

2 of 5

Q3: (20 points)
Translate the following function to assembly:
int fibonacci(int n){

if (n == 0)
return 0;

if (n == 1)
return 1;

else
return (fibonacci(n-1) + fibonacci(n-2));

}

The target machine is a 32-bit RISC with 4-byte integers, a stack pointer register SP, a return
address register RA, eight general purpose registers R0 to R7, and the following instruction set:

goto label
if reg < opnd goto label (==, >=, etc)
move dst, opnd assign opnd to dst
add dst, reg1, opnd2 assign reg1 plus opnd2 to dst
 ditto for sub, mul, and, or,
 leftshift, etc
load dst, (reg1 + opnd2) read integer from memory at
 reg1+opnd2
store (reg1 + opnd1), opnd3 write integer (opnd3) to memory
 at reg1+opnd2
call label set RA to next instruction then
 jump to label
return jump to the address in RA

Each dst must be a register, and each opnd must be a register or an integer constant. The function call
conventions are that parameter is passed in register R0, the return value is returned in R1, and a
function call may destroy any general-purpose register and RA. The stack grows from high to low
addresses, and SP should always point to the lowest word of the current stack frame.
Apart from the statements and expressions, include the code for setting up the stack frame, storing
registers in the stack frame , and fetching registers from the stack frame.

3 of 5

Answer
 .text
 .global
fibonacci:
Memory Layout:
==============
1 * 4: old FP
2 * 4: RA
3 * 4: n
4 * 4: n'

#OUTPUT: R1 and INPUT: R0
 move R7, FP
 move FP, SP
 sub SP, SP, 16

 store FP – 1 * 4, FP
 store FP – 2 * 4, R!
 store FP – 3 * 4, R0

 if R0 != 0 goto LELSEIF
 move R1, 0
 goto Lreturn
LELSEIF:
 if R != 1 goto LELSE
 move R1, 1
 goto Lreturn
LELSE: sub R0, R0, 1
 call fibonacci
 store FP – 4 * 4, R1
 load R0, FP – 3 * 4
 sub R0, R0, 2
 call fibonacci
 load R2, FP – 4 * 4
 add R1, R1, R2
Lreturn:
 load RA, FP – 2 * 4
 load FP, FP – 1 * 4
 add SP, SP, 16
 return

* * *

4 of 5

Q 4: (25 points)

For the following intermediate code representation:
• Find the basic blocks (3 points)
• Draw the Control-Flow Graph (CFG) (2 points)
• Calculate the Liveness (LIVEIN and LIVEOUT) for each instruction (15 points)
• Allocate each of (a, b, d, e) temporary variables in three registers (K = 3). (5 points)

Answer

BBs USE DEF LIVEIN LIVEOUT

I1. L1: a := d + e
I2. if a == d goto L2

BB1 d, e
a, d

a
-

b, d, e
a, b, d, e

a, b, d, e
a, b, e

I3. d := a - b
I4. return d

BB2 a, b
d

d
-

a, b
d

d
-

I5. L2: d := a + b
I6. goto L1

BB3 a, b
-

d
-

a, b, e
b, d, e

b, d, e
b, d, e

Simplify:

push(b) [degree 2]
push(d) [degree 2]
push(e) [degree 1]
push(a) [degree 0]

Select:

select(a), assign a = r1
select(e), assign e = r2
select(d), assign d = r3
select(b), assign b = r2

5 of 5

BB1

BB2

BB3

a, r1

b, r2

d, r3

e, r2

