Compilers

Compiler Construction Tutorial
The Front-end

Salahaddin University
College of Engineering
Software Engineering Department
2011-2012

Amanj Sherwany
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Introduction

= In this tutorial we go through the implementation of
dragonfront compiler which 1s discussed in the Purple
Dragon Book.

= The source code can be found in the webpage of the
course.

= There are many more ways to implement compilers, this
1S just an example.

The CFG of the Language

program — block = stmt — loc = bool ;

block — { decls stmts } | if (bool) stmt

decls — decls decl | € |if (bool) stmt else stmt
decl — type id ; | while (bool) stmt

type — type [num]| | basic | do stmt while (bool) ;

stmts — stmts stmt | € | break :

| block

= Joc — loc [bool]1id

The CFG of the Language, Cont'd

bool — bool | | join | join

= join — join && equality | equality

= equality — equality == rel | equality = rel | rel

= rel — expr < expr | expr <= expr | expr >= expr | expr > expr | expr
= expr — expr + term | expr — term | term

= term — term * unary | term [unary | unary

= unary — ! unary | - unary | factor

factor — (bool) | loc | num | real | true | false

Packages

= The Java code for the translator consists of five
packages:

 main: here the execution starts.

e [exer: the lexical analyzer 1s here.

e symbols: implements symbol tables and types.
e parser: parsing 1s done here

e inter: contains classes for the language constructs
in the abstract syntax. (intermediate code)

The Classes in “lexer”

Tag: defines constants for tokens

 INDEX, MINUS and TEMP are not lexical tokens; they will be
used 1n syntax trees.

Token: 1s a parent class for the possible tokens
Num: represents integer numbers

Word: represents reserved words, identifiers and
composite tokens like & &.

e Itis also useful for managing the written form of operations in the
intermediate code like unary minus; for example the source text
-2 has the intermediate form minus 2.

The Classes in “lexer”, Cont'd

= Real: 1s for floating point numbers

= Lexer: the core class of the lexical analyzer

e The most important method here 1s scan, which recognizes:
- Numbers

- Identifiers

- Reserved words

e Function readch() is used to read the next input character
into variable peek

* Function scan() scans the input and recognizes the possible
tokens

The Classes in “symbols”

= Env: represents environments (symbol table), and maps
word tokens to objects of class Id, which 1s defined in
package inter a long with the classes for expressions
and statements.

= Type: 1s a subclass of Word, since basic type names like
int are basically reserved words:

e The objects for the basic types are Type.Int, Type.Float,
Type.Char and Type.Bool

e All of them have inherited field tag set to Tag.BASIC, so
the parser treats them all alike.

The Classes In “symbols”, Cont'd

= In Type class, functions numeric and max are useful for
type conversions.

e Conversions are allowed between the “numeric” types
Type.Char, Type.Int, and Type.Float

 When an arithmetic operator 1s applied to two
numeric types, the result has the “max” of the two

types.

= Arrays are the only constructed type 1n the source
language

The Classes in “inter”

The package inter contains the Node class hierarchy,
Node has two subclasses: Expr for expression nodes
and Stmt for statement nodes.

Nodes 1n the syntax tree are implemented as objects of
class Node.

For error reporting, filed lexline saves the source-line
number of the construct at this node.

Expression constructs are implemented by subclasses of
Expr.

The Classes in “inter”, Cont'd

= Class Expr has fields op and type, representing the
operator and type, respectively at a node.

= Method gen returns a “term’ that can fit the right side of
a three address instruction:

« Given expression E = E + E , method gen returns a term
x,+x,, where x, and x, are addresses for the values of £,
and E , respectively.

o The return value this is appropriate if this object is an
address; subclasses of Expr typically reimplement gen.

The Classes in “inter”, Cont'd

= Method reduce computes or “reduces” an expression down to a
single address;

e That 1s, it returns a constant, an identifier, or a temporary
name.

- Given expression E, method reduce returns a temporary ¢
holding the value of E.

- Again, this is an appropriate return value if this object is
an address.

Subclasses of Expr

= Id inherits the default implementation of gen and reduce
in class Expr, since an i1dentifier 1s an address.

e The node for an identifier of class Id is a leaf.

e The call super(id, p) saves i1d and p in inherited fields op
and type, respectively.

e Field offset holds the relative address of this identifier.

Subclasses of Expr

= Class Op provides an implementation of reduce that 1s
inherited by subclasses Arith for arithmetic operators,
Unary for unary operators and Access for array
accesses.

* In each case, reduce calls gen to generate a term, emits an

instruction to assign the term to a new temporary name,
and returns the temporary.

Subclasses of Expr, Cont'd

= Arith implements binary operators like + and *.

o Constructor Arith begins by calling super(tok,null), where
tok is a token representing the operator and null is a
placeholder for the type.

e The type 1s determined by using Type.max, which checks

whether the two operations can be coerced to a common
numeric type.

e This simple compiler checks types, but does not insert type
conversions.

Subclasses of Expr, Cont'd

= In class Arith, method gen constructs the right side of a
three-address instruction by reducing the
subexpressions to addresses and applying the operator
to the addresses.

= Class Unary 1s the one-operand counterpart of class
Arith.

= Class Temp, represents the temporary variables (virtual
registers).

Jumping Code for Boolean
Expressions

= Jumping code for a boolean expression B is generated by
method jumping (in Expr)
o Takes two labels t and f as parameters, called the true and
false exits of B, respectively.

e The code contains jump to t if B evaluates to true, and a
jump to f if B evaluates to false.

e By convention, the special label 0 means that control falls
through B to the next instruction after the code for B.

= (Constant represents True and False

= Rel represents operators like: <, <=, ==, |=, >=and >

Intermediate Code for Statements

Each statement construct 1s implemented by a subclass of
Stmt.

The fields for the components of a construct are in the
relevant subclass;

e For example class While has fields for a test expression and
a substatement.

The Stmt class (and its subclasses) deal with syntax-tree
construction.

Stmt.Null represents an empty sequence of statements.

Intermediate Code for
Statements, Cont'd

= The method gen 1s called with two labels b and a, where
b marks the beginning of the code for this statement
and a marks the first instruction after the code for this
statement.

= The subclasses While and Do save their label a in the
field after so it can be used by any enclosed break
statement to jump out of 1ts enclosing construct.

Intermediate Code for
Statements, Cont'd

= The object Stmt.Enclosing is used during parsing to
keep track of the enclosing construct.

e For a source language with continue statements, we can use
the same approach to keep track of the enclosing construct
for a continue statement.

Intermediate Code for
Statements, Cont'd

= Class Sef implements assignments with an identifier on
the left side and an expression on the right.

= Class SetElem implements assignments to an array
element.

= Class Seq implements a sequence of statements.

Parser

= The parser reads a stream of tokens and builds a syntax
tree by calling the appropriate constructor functions.

= Class Parser has a procedure for each nonterminal.

e The procedures are based on a grammar formed by
removing left recursion from the source-language
grammar.

= Parsing begins with a call to procedure program, which
calls block() to parse the input stream and build the
syntax tree.

Parser, Cont'd

Symbol-table handling is shown explicitly in procedure
block.

Variable top holds the top symbol table

Variable savedEnv is a link to the previous symbol
table.

Procedure stmt has a switch statement with cases
corresponding to the productions for nonterminal
Stmt.

Your Task

There 1s break 1n the language, but there 1s no continue,
your work 1s to add it.

In the loops, there 1s no for loop, you have got to support
it.
Extend the given language to support Switch.

Your compiler should read form text files.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

