

Inside the Java Compiler and Virtual
Machine

Nosheen Zaza
nosheenzaza@hotmail.com

And you are....?

 I am a former TA at this department.
 & Before that, a student here as well.
 Now a master student at Uppsala University in

Sweden.
 There I work with the programming languages

group, and we do many sorts of interesting
things.

 Happily married to this subject's lecturer :)

You all (hopefully) have done
these....

 Wrote some Java code using some text editor,
IDE...

 From some menu or toolbar, clicked on (Compile).
 Fixed compile time errors (in most cases).
 Then from some other, or the same menu or

toolbar, clicked on (Run) or something similar
 Your program, worked, crashed or whatever.
 But, do you really know what happens under the

hood?
 During this lecture, I will try to show you what really

happens when you compile and run Java
applications

When you click (Compile)...

 Your text editor or IDE runs the Java compiler, it gives it
all the names of files you are compiling as parameters.

 You can do that on your own as well.
 But where is the compiler? And How does your editing

tools knows where it is?
 Can I have more than one Java compiler on my

computer?
 In what programming language is the Java compiler

written?
 Can I look at the source code of the compiler?

So the Java compiler is...

 A Java program itself!
 It takes Java source code, it translates it into

Java byte code...
 Which is written to one (or more) Java class

files.
 Ever wondered what is inside a Java class file?

Inside a Java class file

 I bet many of you had opened Java class files
before (mistake, out of curiosity), most likely
using your text editor.

 Any success?
 I would say what most of you saw, was

something like this...

����^@^@^@2^@^]
^@^F^@^O ^@^P^@^Q^H^@^R
^@^S^@^T^G^@^U^G^@^V^A^@^F<init>^A^@^C()V
^A^@^DCode^A^@^OLineNumberTable^A^@^Dmain
^A^@^V([Ljava/lang/String;)V^A^@
SourceFile^A^@
Test.java^L^@^G^@^H^G^@^W^L^@^X^@^Y^A^@^
VHello compiler course!
^G^@^Z^L^@^[^@^\^A^@^DTest^A^@^Pjava/lang/Ob
ject^A^@^Pjava/lang/System^A^@^Co$
^@^@^@^F^@^A^@^@^@^A^@ ^@^K^@^L^@^A�
^@ ^@^@^@%^@^B^@^A^@^@^@

^@^B^R^C ^@^D ^@^@^@^A^@� � �
^@^@^@
^@^B^@^@^@^C^@^H^@^D^@^A^@^M^@^

But why?

 Since Java class files are stored in binary format
(sequences of zeros and ones), not text.
 Another why?
 To make IO faster!
 For real applications (and even the tiniest ones), thousands of

classes are compiled and loaded (I will show you in a while).
 (Good you too do this, when you want to read and write files as

fast as possible)

 So if class files are sequences of digits, why all I see is
^@....?����

 Since your text editor interprets these digits the way it likes! It
does not know the right way to interpret them.

Then how do I know what they
mean?

 Java class file format has it all
http://docs.oracle.com/javase/specs/jvms/se5.0/html/Overview.doc.html#32310

 OK, I know, a bit hard to understand.
 So first I will show you what is inside a class

file, from a tool you all have and can read it
almost decently.

 Then I will show you another tool that does this
task a lot better.

http://docs.oracle.com/javase/specs/jvms/se5.0/html/Overview.doc.html#32310

javap

 Comes with JDK
 Disassmbles class files (yes, if someone has

the class file, he can get the original source
code from it very easily, and yes there are ways
around this).

 Also interprets the class file, as it is.
 Type javap --help
 Useful options: -c, -verbose, -s

There are other options

 Depends on what you want.
 I like and use ClassEditor.
 Since it better reflects the structure of a class

file.
 You can edit the class file directly!

Nice, but how is any of this useful?
 Some interesting applications:

 Say you want to know the time spent in each method in your
application.

 You want to know the sizes of all objects created during the
running of your application.

 Your application contains a 1000+ source files.
 Manually??
 Build a tool that analyses the source code?

 You can of course transform the source file.
 However, it is closer to natural language than the bytecode,

and more flexible
 Harder to reason about.
 More cases to handle.

Tools to help you
 Many good byte code transformation libraries.
 I use ASM.
 Some other commonly used ones:

 Javaassist: Claimed to be simpler to use than ASM.
 Both source and byte code modification.
 Thus, you do not need to know the specification of the byte

code.
 Soot: Mainly used for optimization.

That's all I wanted to mention about
compilation

 Questions?
 Anything else you want to know?

Running Java Applications
 Your application cannot run directly on your machine,

on its own.
 The bytecode is not machine code, your machine

cannot understand and execute it.
 In your application, you do not deal with memory

directly (allocation, freeing...), but this does not mean
that this should not be done.

 Your application runs with the help of a virtual
machine.

 This machine interprets the byte code, converts it to
machine code suitable for you machine, and runs it.

 It also does memory management for you.

Why this indirection?
 I would say this is the one of the greatest ideas to

make programming a lot easier and cleaner.
 If you have ever done any C or C++

programming, you would see why.
 Memory management is the most annoying thing

on the planet.
 You really need to carefully consider the

architecture and the operating systems that your
application is expected to run on.
 Why do many of C/C++ libraries have their own

types?

Why this indirection? (2)
 With a virtual machine, you only need to be

compatible with one architecture (the one of the
virtual machine).

 Memory management is handled by the virtual
machine.

 Thus, the burdens of considering many
architectures, managing memory and other things
are not yours anymore, but the virtual machine
coders'.

 Different virtual machines for different operating
systems/architectures.

But still remember
 All this is nice and promising, but not 100%

realistic.
 To be a good programmer, it is always a good

idea to learn about different architectures, where
your application is expected to run.
 It is probably not the greatest idea to create the exact

same application to run on a Desktop and a mobile
phone.

 You may want to make use of a certain architecture's
features, the virtual machine can make this somehow
harder.

 Always use the right tool for the right purpose!

Executing the bytecode

 The Java virtual machine is stack-based.
 java Test.java
 To get some intersting information:

 java -verbose Test
 java -Xprof Test

 To get even more interesting information:
 JVMTI

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

