

Inside the Java Compiler and Virtual
Machine

Nosheen Zaza
nosheenzaza@hotmail.com

And you are....?

 I am a former TA at this department.
 & Before that, a student here as well.
 Now a master student at Uppsala University in

Sweden.
 There I work with the programming languages

group, and we do many sorts of interesting
things.

 Happily married to this subject's lecturer :)

You all (hopefully) have done
these....

 Wrote some Java code using some text editor,
IDE...

 From some menu or toolbar, clicked on (Compile).
 Fixed compile time errors (in most cases).
 Then from some other, or the same menu or

toolbar, clicked on (Run) or something similar
 Your program, worked, crashed or whatever.
 But, do you really know what happens under the

hood?
 During this lecture, I will try to show you what really

happens when you compile and run Java
applications

When you click (Compile)...

 Your text editor or IDE runs the Java compiler, it gives it
all the names of files you are compiling as parameters.

 You can do that on your own as well.
 But where is the compiler? And How does your editing

tools knows where it is?
 Can I have more than one Java compiler on my

computer?
 In what programming language is the Java compiler

written?
 Can I look at the source code of the compiler?

So the Java compiler is...

 A Java program itself!
 It takes Java source code, it translates it into

Java byte code...
 Which is written to one (or more) Java class

files.
 Ever wondered what is inside a Java class file?

Inside a Java class file

 I bet many of you had opened Java class files
before (mistake, out of curiosity), most likely
using your text editor.

 Any success?
 I would say what most of you saw, was

something like this...

����^@^@^@2^@^]
^@^F^@^O ^@^P^@^Q^H^@^R
^@^S^@^T^G^@^U^G^@^V^A^@^F<init>^A^@^C()V
^A^@^DCode^A^@^OLineNumberTable^A^@^Dmain
^A^@^V([Ljava/lang/String;)V^A^@
SourceFile^A^@
Test.java^L^@^G^@^H^G^@^W^L^@^X^@^Y^A^@^
VHello compiler course!
^G^@^Z^L^@^[^@^\^A^@^DTest^A^@^Pjava/lang/Ob
ject^A^@^Pjava/lang/System^A^@^Co$
^@^@^@^F^@^A^@^@^@^A^@ ^@^K^@^L^@^A�
^@ ^@^@^@%^@^B^@^A^@^@^@

^@^B^R^C ^@^D ^@^@^@^A^@� � �
^@^@^@
^@^B^@^@^@^C^@^H^@^D^@^A^@^M^@^

But why?

 Since Java class files are stored in binary format
(sequences of zeros and ones), not text.
 Another why?
 To make IO faster!
 For real applications (and even the tiniest ones), thousands of

classes are compiled and loaded (I will show you in a while).
 (Good you too do this, when you want to read and write files as

fast as possible)

 So if class files are sequences of digits, why all I see is
^@....?����

 Since your text editor interprets these digits the way it likes! It
does not know the right way to interpret them.

Then how do I know what they
mean?

 Java class file format has it all
http://docs.oracle.com/javase/specs/jvms/se5.0/html/Overview.doc.html#32310

 OK, I know, a bit hard to understand.
 So first I will show you what is inside a class

file, from a tool you all have and can read it
almost decently.

 Then I will show you another tool that does this
task a lot better.

http://docs.oracle.com/javase/specs/jvms/se5.0/html/Overview.doc.html#32310

javap

 Comes with JDK
 Disassmbles class files (yes, if someone has

the class file, he can get the original source
code from it very easily, and yes there are ways
around this).

 Also interprets the class file, as it is.
 Type javap --help
 Useful options: -c, -verbose, -s

There are other options

 Depends on what you want.
 I like and use ClassEditor.
 Since it better reflects the structure of a class

file.
 You can edit the class file directly!

Nice, but how is any of this useful?
 Some interesting applications:

 Say you want to know the time spent in each method in your
application.

 You want to know the sizes of all objects created during the
running of your application.

 Your application contains a 1000+ source files.
 Manually??
 Build a tool that analyses the source code?

 You can of course transform the source file.
 However, it is closer to natural language than the bytecode,

and more flexible
 Harder to reason about.
 More cases to handle.

Tools to help you
 Many good byte code transformation libraries.
 I use ASM.
 Some other commonly used ones:

 Javaassist: Claimed to be simpler to use than ASM.
 Both source and byte code modification.
 Thus, you do not need to know the specification of the byte

code.
 Soot: Mainly used for optimization.

That's all I wanted to mention about
compilation

 Questions?
 Anything else you want to know?

Running Java Applications
 Your application cannot run directly on your machine,

on its own.
 The bytecode is not machine code, your machine

cannot understand and execute it.
 In your application, you do not deal with memory

directly (allocation, freeing...), but this does not mean
that this should not be done.

 Your application runs with the help of a virtual
machine.

 This machine interprets the byte code, converts it to
machine code suitable for you machine, and runs it.

 It also does memory management for you.

Why this indirection?
 I would say this is the one of the greatest ideas to

make programming a lot easier and cleaner.
 If you have ever done any C or C++

programming, you would see why.
 Memory management is the most annoying thing

on the planet.
 You really need to carefully consider the

architecture and the operating systems that your
application is expected to run on.
 Why do many of C/C++ libraries have their own

types?

Why this indirection? (2)
 With a virtual machine, you only need to be

compatible with one architecture (the one of the
virtual machine).

 Memory management is handled by the virtual
machine.

 Thus, the burdens of considering many
architectures, managing memory and other things
are not yours anymore, but the virtual machine
coders'.

 Different virtual machines for different operating
systems/architectures.

But still remember
 All this is nice and promising, but not 100%

realistic.
 To be a good programmer, it is always a good

idea to learn about different architectures, where
your application is expected to run.
 It is probably not the greatest idea to create the exact

same application to run on a Desktop and a mobile
phone.

 You may want to make use of a certain architecture's
features, the virtual machine can make this somehow
harder.

 Always use the right tool for the right purpose!

Executing the bytecode

 The Java virtual machine is stack-based.
 java Test.java
 To get some intersting information:

 java -verbose Test
 java -Xprof Test

 To get even more interesting information:
 JVMTI

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

