
Compilers Course Lecture 17 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course
Lecture 17: Runtime Environment

Typical memory layout for a process:

|-----------------------| high addresses
| Stack (dynamic, grows | compiler generates code to manage this
| down) |
| ... |
| Heap memory (dynamic, | managed by runtime library
grows up)
Uninitialized global
variables

Initialized global
variables

Code for library
procedures
...
Code for application
procedures

Registers at program start:
SP = points to the initial stack top
PC = points to the initial code (main)
R0 ... Rn = junk or zeros

Runtime Library
Typically there is a layer of code between the application and the machine or operating system: the
runtime library.

• At start, some initialization may need to occur. The linker selects a procedure in the runtime
library as the program's starting point. That procedure initializes things and then calls the
application's starting point.

• There may be a special protocol to terminate a process. The runtime startup procedure can catch
a return from main() and then do a proper termination (e.g. syscall exit).

• During execution the application and libraries will need to make system calls. The runtime
library provides procedures that act as wrappers around the low-level system call mechanism
(typically a software interrupt or trap instruction).

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 17 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compiler support library

High-level languages typically implement some functionality in libraries rather than having the
compiler outputs a lot of code for that functionality:

• Dynamic memory management, garbage collection
• Exception handling
• Standard procedures for I/O, networking, data structures, etc

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

