
Compilers Course Lecture 14 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course
Lecture 14: Data Layout

For every type (primitive or user-declared) the compiler must know:
• Its size in bytes
• Its alignment: if a type has alignment N, then every instance of that type in memory must have

an address A = K*N (for some integer K)

Scalar (primitive) types
- char, short, int, long, enumerations, pointers, float, double
- Occupies N=2^K consecutive bytes: [b0,b1,...,bn-1]
 so the size is N; typical values are:

sizeof(char) == 1
sizeof(short) == 2
sizeof(float) == 4
sizeof(double) == 8
on 32-bit machines: sizeof(int) == sizeof(pointer) == 4
on 64-bit machines: sizeof(int) == 4, sizeof(pointer) == 8
sizeof(long) == sizeof(pointer) except on Win64 where it is sizeof(int)

- The alignment for primitive types is often also N
 misaligned loads/stores may cause exceptions or slow execution

Byte order
• A 32-bit integer requires 4 bytes [b0,b1,b2,b3] in memory
• A value 0x11223344 is usually formatted in one of the following two ways:

• Little-endian order: [0x11,0x22,0x33,0x44]
• Big-endian order: [0x44,0x33,0x22,0x11]

• Byte order does not matter as long as integers are accessed using the machine's natural integer-
sized load/store instructions, so compilers usually do not care about byte order

• Programmers sometimes write sloppy/careless code that is sensitive to byte order, for instance
in binary data conversion procedures

Arrays
• Element_type A[N]
• Sequence of N identically-shaped elements:

A[0] A[1] … A[N-1]

• Size = N * size of the element type
• Alignment = alignment of the element type:

if A[i] is aligned, then so will A[i+1] be

Note that the presence of arrays requires that every single type has a size that is a multiple of its
alignment.

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 14 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Records (structs)
• Struct S { type1 field1; type2 field2; ...; typeN fieldN; };
• Sequence of N differently-shaped elements:

field1 field2 ... filedN

• The elements are usually stored in the same order as declared
• Alignment = MAX(alignment for any field type)
• Between two fields there may be "internal padding" of unused bytes to ensure alignment of the

second field
• After the last field there may be "tail padding" of unused bytes to ensure the size is a multiple of

the alignment

Example: struct S { int i; double d; int j; }

• Alignment will be 8 because alignof(double) == 8.
• i will be at offset 0
• There will be 4 bytes of internal padding at offset 4
• d will be at offset 8
• j will be at offset 16
• There will be 4 bytes of tail padding at offset 20
• The total size is 24

0: i 4 bytes

4: pad 4 bytes

8: d 8 bytes

16: j 4 bytes

20: pad 4 bytes

Unions
• union u { type1 field1; type2 field2; ...; typeN fieldN; };
• The fields overlap, all fields start at offset 0
• Alignment = MAX(alignment for any field)
• Size = MAX(size of any field) + tail padding to make the size a multiple of the alignment

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

