
Compilers Course Lecture 13 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course
Lecture 13: AST to RTL Translation: Basics

Problem: where are local variables located?
1. Assume all local variables are on the stack, access variables via SP (or FP) plus offset.
 - works but makes the RTL very machine specific, and prevents some optimizations in the back-end .
2. Treat local variables as temps, delay storage assignment (stack slots or registers) to the back-end.
 + better for portability and code optimization
 - needs virtual stack storage for arrays and any variable accessed via a pointer

We will follow approach 2 here. For now we only consider scalar variables, arrays and other data
structures will be handled later.

Scalar Variable Declarations

1. Global variable
 * map name to label
 * output RTL global variable declaration

GLOBAL(x, int) // x needs space for an 'int'

2. Local variable or function parameter
 * create a new temp for that variable

Use a symbol table to keep track of the location (LABEL L or temp t) of each scalar program variable.

Constants "c"

result = c

Expressions

Expressions are translated to sequences computing their values into a result temporary.

Reading the value of a variable "x"

if x is a local var in temp_x :
result = temp_x

if x is in memory at LABEL_x :
address = LABEL_x
result = load(address)

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 13 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

 Assigning x = E

First translate E, assume its value is in temp_e:
temp_e = E

if x is a local var in temp_x
temp_x = temp_e

if x is in memory at LABEL_x
address = LABEL_x
store(address, temp_e)

Unary expressions: op(E)

temp = E // recursively translate E
result = op temp // translate op

Binary expressions: E1 op E2

temp1 = E1 // recursively translate E1
temp2 = E2 // recursively translate E2
result = temp1 op temp2 // translate op

Function calls: f(E1, ..., En)

temp_1 = E1
...
temp_n = En
result = f(temp_1, ..., temp_n)

Summary

Translation of expressions is done by a recursive procedure:
• Parameter: expression (AST)
• Parameter: symbol table mapping variables to "locations" (temporaries or global labels)
• Result is a list of instructions and a temp containing the final value, alternatively pass in the

desired result temp as a parameter
• Inspects the shape of the expression
• Recursively translates subexpressions
• Combines the results to finish translation of the expression

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 13 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Statements

Statements are translated to sequences performing their effects in the correct order.

Sequences: S1 ; S2

S1
S2

IF statements

if E1 then
 S1
else if E2 then
 S2
else
 S3

Generally we emit instructions in the same order as they occur in the program, with jumps to control
execution order:

temp1 = E1
if not temp1 goto L2
S1
goto Lnext

L2: temp2 = E2
if not temp2 goto L3
S2
goto Lnext

L3: S3
Lnext:

Some expressions also have control flow:
e1 && e2, e1 || e2, e1 ? e2 : e3

WHILE loops

while E do S

Naive translation:

Ltest: temp = E

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 13 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

if not temp goto Lnext
S
goto Ltest

Lnext:

The number of jumps executed (whether taken or not) is 2N+1 for a loop with N iterations.

Improved translation:

goto Ltest
Lbody: S
Ltest: temp = E

if temp goto Lbody
Lnext:

Now the number of jumps is N+2.

BREAK/CONTINUE

A break is a goto to the statement following the current loop.
A continue is a goto to the iteration test of the current loop.
So to translate them we must place labels at these points and pass those labels as parameters to the
translation procedure.

while E1 do begin
 if E2 break // goto Lnext
 if E3 continue // goto Ltest
end

DO loops

do S while E

Exactly like the improved version of WHILE loops, except we start in the loop body not the test:

Lbody: S
Ltest: temp = E

if temp goto Lbody
Lnext:

"break" becomes "goto Lnext"
"continue" becomes "goto Ltest"

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 13 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

FOR loops

for (init; condition; step) S

init
goto Lcond

Lbody: S
Lstep: step
Lcond: temp = cond

if temp goto Lbody
Lnext:

"break" becomes "goto Lnext"
"continue" becomes "goto "Lstep"

SWITCH

switch (E) {
 case C1: S1; break;
 case C2: S2; break;
 ...
 default: Sn
}

The semantics in C is that S1; S2; ...; Sn are output in that order, with a label Li at each case statement
Si. This sequence is preceded by code that compares E with C1, then C2, and so on until a match is
found. If a match is found, a jump is made to the corresponding label:

temp = E
if temp == C1 goto L1
if temp == C2 goto L2
...
goto Ln

L1: S1
L2: S2
...
Ln: Sn
Lnext:

A "break" in any Si becomes "goto Lnext".
The initial tests can also be implemented using binary search, a jump table: an array where element Ci
contains Li, or by a loop over an array of <Ci, Li> elements.

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 13 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

RETURNS

return E

temp = E
tempRV = temp
goto Lreturn

where tempRV is the temp used for the function's return value, and Lreturn is the label of the epilogue
code (deallocate frame and return).

Example:

int max(int a, int b)
{
 if (a > b)

return a;
 else

return b;
}

sum(ta, tb):
tcond = ta > tb
if not tcond goto Lelse
tempRV = ta
goto Lreturn

Lelse:
tempRV = tb;

Lreturn:
<backend will add return code here>

Summary

Translation of statements is done by a recursive procedure:
• Parameter: statement (AST)
• Parameter: symbol table (passed on to expressions)
• Parameters: labels for break/continue/return
• Result is a list of instructions
• Inspects the shape of the statement
• Emits code for jumps etc mixed with recursive calls to translate sub-statements

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

