
Compilers Course Lecture 12 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course
Lecture 12: Intermediate Representation (IR)

The purpose of the compiler's backend is to translate the AST to executable machine-specific code.
However, there is a huge "semantic gap" between the source language (C, Java, etc) and the machine
(MIPS, x86, etc).

An intermediate representation (IR) allows the compiler to perform the translation in smaller steps:
• First the AST is translated to the IR
• Then the IR is translated to machine-specific code

Depending on the complexity of the source-to-target translation, a series of successively simpler IRs
may be used.

Using an IR can also help the compiler in other ways:
• It can support multiple target machines: each target will require a new IR-to-target translation,

but the front-end of the compiler can be shared
• It can support multiple programming languages: each language requires a new parser, type

checker, and AST-to-IR translator, but the back-end of the compiler can be shared

Example

int f(int x) {
if (x+g()<2)

return a();
else

return b();
}

RTL/quadruples

• RTL = register transfer language
• Quadruples = arithmetic operations with four parts: dst, src1, op, src2
• Sequence of simple machine-like instructions
• No nested expressions or statements
• Assumes unbounded number of temps (temporary variables == virtual registers), and that temps

survive recursive calls

+ simple semantics
+ useful for global code optimization and register allocation later on
+ easy to translate to actual machine code
- the many temps makes it not so easy to interpret by a virtual machine

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 12 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

f(x):
t1 = x
t2 = g()
t3 = t1+t2
t4 = 2
if t3 >= t4 goto L
t5 = a()
return t5

L: t6 = b()
return t6

Using trees for expressions

• Sequence of assignment or control-flow statements
• Uses nested expressions for temporary values
• Must also have syntax for parameters, local variables, and global variables

+ simple AST-to-trees translation step
+ useful as initial step to eliminate high-level or ambiguous constructs
+ simple representation useful for high-level code optimization
- far from the machine, requires more translation steps
- inefficient representation for interpretation by a virtual machine

f(x):
if (x + g()) >= 2 goto L
return a()

L: return b()

Using RPN

• RPN = reverse polish notation
• Sequence of instructions (push, +, if-jump, etc) for a stack machine
• Essentially just a different representation of trees

+ very easy to interpret by a virtual machine
- not useful for code optimization

f(x): stack
push x x
call g x, g()
+ x+g() [pop 2 values, compute +, push result]

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

Compilers Course Lecture 12 Academic Year: 2011-2012
http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

push 2 x+g(), 2
if >= goto L empty [pop 2 values, compare, maybe branch]
call a a()
return empty

L: call b b()
return empty

Summary

• Serious compilers generally use RTL as their main IR
• Trees may be used as an intermediate step between AST and RTL, especially when compiling

high-level languages
• RPN is mainly used in abstract machine interpreters

http://www.amanj.me/wiki/doku.php?id=teaching:su:compilers

