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Compilers Course
Lecture 3: Lexical Analysis

Lexer (Scanner): 
• Input is a stream (sequence, list) of characters .
• Output is a stream of tokens ("words") with attributes .

Parser: 
• Input is the stream of tokens .
• Output is the program's syntax tree .

An example:
... x = x + 27; ... 

... ID(x) ASSIGN ID(x) PLUS ICON(27) SEMI ... 

What Does a Lexer Do:
• Partition input into substrings ("lexemes") .
• Each substring corresponds to a "word", a blank, or a comment .
• For non-blank substrings the corresponding token is generated: 

a symbolic constant and possibly an attribute ("27" → ICON(27)) .
• Attach input positions to tokens for error messages .

How Does the Lexer work:
• Apply a finite automaton (DFA) to start of the input .
• At accept: a word or blank/comment has been recognized: remove it and generate the token .
• Repeat until end of input is reached .

Why Lexer?
• Separate scanner simplifies both parser and scanner .
• Can use regular expressions to specify the "word" classes of the language: 

◦ Can automatically generate the DFA, good for the implementor .
◦ Declarative and simple specification .

ASSIGN

ID(x) PLUS

ID(x) ICON(27)
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Regular Languages: Repetition :

Alphabet: finite set of symbols. Often denoted by Σ. 
Example: Σ = {0, 1} for binary numbers. 

String: finite sequence of symbols from a given alphabet. Often denoted by lower-case s, t, or w. 
Example: "101". 
Operations on strings: 
ε the empty string 
s1.s2 concatenation: "0"."1" = "01" (the dot is often omitted) 
si = s(i-1).s if i>0 (repetition) 
s0 = ε

Language: a set (often infinite) of strings from some alphabet. Often denoted by upper-case L or M. 
Example: {}, {0}, {10}, {110} 
Operations on languages: 

L∪M ={s∣s∈ L∨s∈ M } or 
L.M ={s.t∣s∈ L∧t ∈ M } sequence (dot often omitted) 
Li=Li −1 . L if i>0 bounded repetition 
L0=ε

  L* =  U Li unbounded repetition 
      (i>=0) (Kleene closure) 
  L+ = L.L* positive closure 

Other set operations are often not interesting when describing programming languages. 

Example: 
D = {0, 1, ..., 9} 
L = {a, b, ..., z, A, B, ..., Z} 
M = L.(L U D)* = all identifiers in a typical programming language 

Regular expressions: finite specifications of regular languages. 

Primitive notation for regular expressions:

r L(r) 
---------------------- 
ε {ε} 
a {a} if a ∊ Σ
r.s L(r).L(s) (dot often omitted) 
r|s L(r) U L(s) 
r* (L(r))* 
(r) L(r) 
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Laws: 
ε.r = r.ε = r 
r|s = s|r 
r.(s|t) = (r.s)|(r.t) 

Shorthand notation: 
r+ r.r*       non-empty sequences 
[a-z] a|b|c|...|z       character sets/classes 
[^0-9] Σ \[0-9] negated character classes 
r? r|ε       optional expressions 

We may name regular expressions and refer to them by name. This can be used to simplify complex 
expressions. The name may not occur in its regular expression, either directly or indirectly! 

Examples of token classes in programming languages 

Identifiers: i, foo, x27, ab; but not 9x 

letter = [a-zA-Z_] 
digit = [0-9] 
identifier (ID) = letter (letter | digit)* 

Token ID with string attribute: "foo" becomes ID("foo") 

Integers 
decimal = [0-9]+ 
octal = 0 [0-7]* 
hexadecimal = 0x [0-9a-fA-F]+ 

In some languages any +/- sign is part of the constant, in other languages the sign is a separate unary 
operator. 

Token ICON with integer attribute: "27" becomes ICON(27) , ICON stands for (Integer Constant).

Keywords (Reserved Words) :
• List them, one regexp per word: "if", "while", "return", etc .
• Each keyword has its own unique token, without attribute (the parser must be able to identify 

them directly without also having to check an attribute) .

Symbols: +, -, *, /, , , >=, etc .
• Handled just like keywords .
• Symbols that behave identically in the syntax may be combined, for example: <, <=, >=, and > 
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may be combined into a RELOP token with an attribute identifying the actual operator .

Floating-point numbers :
Languages vary in whether the decimal part is mandatory or not when an exponent is present .

sign = (+|-) 
integer = [0-9]+ 
exponent = "E" sign? integer 
float = sign? integer "." integer exponent? 

Fairly strict specification. A more liberal specification could be: 
float = sign? (integer ("." integer)? exponent | integer? "." integer exponent?) 

which would also accept 1E2 and .27 

String literals :
• Start, sequence of elements, end.
• The problem is to express what the elements look like.

string = '"' element* '"' 
element = [^"] 

Will do for simple strings. In C and ML special characters can be inserted if they are quoted with a "\"-
character: 
element = [^\\"] | "\"[\\"] 

This allows "foobar", "foo\"bar" and "foo\\bar" 

Whitespace/blanks: 
• List the characters: white = [ \t\n\r] .
• When accepting a whitespace regexp, the scanner is told to resume scanning without generating 

any token .

Comments: 
• Specified like strings, but are thrown away like blanks .

C++: 
cpluspluscomment = "//" [^\n] \n 

C: 
ccomment = "/*" stuff* "*/" 

The problem is that any "*" within the comment must not be followed by "/", since that would 
terminate the comment. 
stuff = [^*/] | [^*]"/" | "*"[^/] 
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 This works except for "*" just before the terminating "*/", and "/" just after the initial "/*". ("/***/" 
would go wrong) . We must handle trailing "*"s and leading "/"s specially: 

stuff = [^*/] | [^*]"/" | "*"[^/] 
ccomment = "/*" "/"* stuff* "*"* "*/" 1

Ambiguities (BAD) :

• Is "+=" PLUSASSIGN (one token) or PLUS, ASSIGN (two tokens)? 
• Is "ifx" an identifier ID("ifx") or the keyword IF followed by the identifier ID("x")? 
• Is "if" a keyword or an identifier (IF or ID("if"))? 

Solved by meta-rules: 
• The character stream is scanned from left to right .
• Longest match: the longest substring that matches any regexp is the one to be accepted; this 

solves cases 1 and 2 above .
• Priority: the regexps are listed in priority order, and those listed early take priority over those 

listed later; listing the keywords before the identifier regexp solves case 3 above 

Context-sensitive constructs :

Nested comments in SML: 

 <a piece of code> (* with a comment *) 

Now let's comment it out: 

(* this code doesn't work 
 <a piece of code> (* with a comment *) 
 *) 

Problem: U{xi.yi} for i>=0 is not a regular language, regular languages "cannot count". 

Solution: Automaton with multiple start states, code to count nesting level, and checks at "*)" to 
choose next state based on nesting level. 
In Fortran whitespace is insignificant: 

DO 5 I = 1,25 
vs .
DO 5 I = 1.25 

The first line is the start of a DO loop statement (due to ","). The second line assigns 1.25 to the 
variable DO5I. 
Problem: the context after the string determines how it is to be interpreted. 

1Solution from Schreiner & Friedman, "Introduction to Compiler Construction with UNIX", 1985, page 25.
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Lexical Analysis: Implementation :

A regular expression r denotes a set of strings: L(r). So s ∊ L(r) determines if a string is a token or not. 
Problem: L(r) can be, and often is, infinitely large. 

A finite automaton :

• Is of finite size .
• Can answer s ∊ L(r) in |s| time steps  (where |s| is the length of s) .

Automata Basics (skip it if they are familiar with it)   :  

Definition: 
A finite automaton (FA) is a 5-tuple M=(Σ, Q, q0, F, δ) where: 

• Σ is a finite set of symbols (the alphabet).
• Q is a finite set of states.
• q0 ∊ Q is a unique start state.
• F is a subset of Q, the final states.
• δ is a transition function from states and symbols to states.

NFAε: 
• δ: state x (symbol or ε) → set of states.
• Non-deterministic

NFA: 
• δ: state x symbol → set of states.
• Non-deterministic 

DFA: 
δ: state x symbol → set of a single state:

• Deterministic.
• In theory a DFA should be total: delta should be defined for all state/symbol pairs and return a 

single state for each such pair.
• In practice we allow DFAs to be partial: if delta is defined for a state/symbol pair then it returns 

a single state, otherwise it returns an error marker.
• A partial DFA is equivalent to a total DFA where the error marker is an additional non-final 

error state, and transitions on the error state and any symbol return to the error state.

A configuration is a 2-tuple <state, string>. 
The delta function defines a relation on configurations, ⇒, as follows: 
<q, aw> ⇒ <q', w> 

if q'  δ(q, a) ∊
one transition step, consuming one input symbol 

<q, w> ⇒ <q', w> 
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if <q, ε>  Dom(δ) and q'  delta(q, ε) ∊ ∊
one transition step, no input consumed 

The ⇒ relation is then extended to ⇒*: 
<q, w>⇒* <q, w> 
<q, w> ⇒* <q'', w''> if <q, w> ⇒* <q', w'> and <q', w'> ⇒ <q'', w''> 

That is, we can apply ⇒ zero or more times. 

Finally, the language of the automaton, L(M) is defined as: 
L(M) = { w | <q0,w> ⇒* <q', ε> and q'  F } ∊
That is, starting from q0 there exists a sequence of transition steps that consume the entire string and 
end in a final state. 

Example: 
Σ = { a, b } 
Q = { q0, q1 } 
F = { q1 } 
δ[q0, a] = q1 
δ[q0, b] = q0 
δ[q1, a] = q1 
δ[q1, b] = q0 

is a DFA accepting strings of a:s and b:s that end with an a. 

<q0, aba> ⇒ <q1, ba> ⇒ <q0, a> ⇒ <q1, ε> 

Implementation of a Lexer 

1. Define regular expressions for tokens and blanks: r = r1 | r2 | ... | rn 
2. Convert r to a DFA: 

1. Convert r to an NFAε.
2. Convert the NFAε to a DFA.
3. [Optional] Minimize the DFA.

3. Implement the DFA in program code. 
4. Add code for input management, actions to run when tokens are recognized, conflict resolution 

(longest match, priority), and error handling.

Converting a Regular Expression r to an NFAε

For complex regular expressions composed of smaller ones, we translate the components first, and then 
combine their automata to form a larger automaton for the original regular expression. 

r = ε
M: state q0 

q0 is both start and final state q
0
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r = "a" 
M: states q0, f0 

q0 is start state, f0 final state 
connect q0 and f0 with a transition on "a": 
δ(q0, a) = f0 

r = r1.r2 
translate r1 to M1 with start state q1 and final state f1 
translate r2 to M2 with start state q2 and final state f2 
connect f1 to q2 with an ε transition 
the result M has q1 as start state and f2 as final state 
(f1 is no longer a final state) 

r = r1 | r2 
translate r1 to M1 with start state q1 and final state f1 
translate r2 to M2 with start state q2 and final state f2 
add new states q0 and f0 
connect q0 to q1 with an ε transition 
connect q0 to q2 with an ε transition 
connect f1 to f0 with an ε transition 
connect f2 to f0 with an ε transition 
the result M has q0 as start state and f0 as final state 
(f1 and f2 are no longer final states) 

r = r1* 
translate r1 to M1 with start state q1 and final state f1 
add new states q0 and f0 
connect q0 to f0 with an epsilon transition 
(the case when the empty string is accepted) 
connect q0 to q1 and f1 to f0 with epsilon transitions 
(the case when a single instance of r1 is accepted) 
connect f1 to q1 with an epsilon transition 
(the case when more than one instance of r1 is accepted) 
the result M has q0 as start state and f0 as final state 
(f1 is longer a final state) 

NOTE: Appel's Tiger Book uses a slightly different presentation where each intermediate "automaton" 
has a start edge but no start state. This results in fewer states and ε transitions in the NFAε, but is more 
problematic from a presentation point of view. 

Example: r = (1|0)*1 

Translate inner-most components first, then move up and connect things. 
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Connect (1|0)* with 1: 

q0 is the start state, q9 is the final state 

Converting an NFAε to a DFA
 
The idea is to create a DFA that simulates the NFAε. A state in the DFA will be a set of states in the 
NFAε. The transition function in the DFA will follow all possible transitions in the NFAε, and all 
possible ε-transitions. 

ε-closure(S) 

Given an initial set of states S the automaton can be in, ε-closure(S) gives the larger set of states T the 
automaton also can be following only ε-transitions. 

Definition: 
ε-closure(S) = T, where 

1. S and T are sets of states.
2. T is a superset of S.
3. If q  T and <q, ε> → q', then q'  T ∊ ∊
4. T is the smallest set that satisfies 2) and 3) 

Constructing the DFA 

Let qi and δ belong to the given NFAε, and q'i and δ' belong to the DFA being constructed. 

1. The start state, q'0 is given by:  q'0 = ε-closure({q0}).
2. If {q1, ..., qn} is a state in the DFA and a is a symbol, then δ'({q1,...,qn}, a) = ε-closure(∪ 

(1<=i<=n)δ(qi, a)) Given a set of possible states, we first follow all possible transitions on a, 
and then follow all possible ε-transitions.  Step 2 is repeated until no new states in the DFA 
are created. 

3. A state q' = {q1,...,qn} in the DFA is a final state if any qi is a final state of the NFAε. 
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Example: convert the (1|0)*1 automaton to a DFA. 

S0 = ε-closure({q0}) = {q0,q1,q2,q4,q7,q8} 

δ'(S0,0) = ε-closure(delta({q0,q1,q2,q4,q7,q8},0)) 
     = ε-closure({q5}) 
     = {q5,q6,q1,q2,q4,q7,q8} 

          = {q1,q2,q4,q5,q6,q7,q8} = S1 
δ'(S0,1) = ε-closure(δ({q0,q1,q2,q4,q7,q8},1)) 

     = ε-closure({q3,q9}) 
     = {q3,q9,q6,q1,q2,q4,q7,q8} 
     = {q1,q2,q3,q4,q6,q7,q8,q9} = S2 

δ'(S1,0) = ε-closure(δ({q1,q2,q4,q5,q6,q7,q8},0)) 
     = ε-closure({q5}) = S1 

δ'(S1,1) = ε-closure(δ({q1,q2,q4,q5,q6,q7,q8},1)) 
     = ε-closure({q3,q9}) = S2 

δ'(S2,0) = ε-closure(δ({q1,q2,q3,q4,q6,q7,q8,q9},0)) 
     = ε-closure({q5}) = S1 

δ'(S2,1) = ε-closure(δ({q1,q2,q3,q4,q6,q7,q8,q9},1)) 
     = ε-closure({q3,q9}) = S2 

q9 is final in the NFAε, so S2 is final in the DFA 

DFA Minimization (sketchy)

Two states q1 and q2 are equivalent (==) if: 

• Both are final or both are non-final.
• δ(q1,a) == delta(q2,a) for all symbols a.
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Equivalent states can be merged without changing the language accepted by the automaton. 

Example: S0 and S1 are both non-final, and they have identical transitions, hence S0 == S1, and the final 
DFA for (1|0)*1 is: 

Recognizing Longest Prefixes:

Using a DFA makes it easy to check if some string s  L(r). ∊

However, in reality we must: 
• Partition s into words s1.s2.s3...sn 
• At each point recognize the longest prefix s' of s where s'  L(r).∊
• Generate tokens.
• Restart where previous word ended.
• Handle lookahead: 

  r1 = aa 
  r2 = aabb 
  input = aabc... 
  The lexer will scan aab, but the word to recognize is aa. 

Solution: 
• When reaching a final state, remember the input position and state, but continue to read input 

and run the automaton.
• At end-of-file or no-transition error, reset input to the remembered position, generate token 

based on remembered state, and then restart the lexer.
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Pseudo-code 

States: small integers 0..n 
Symbols: small integers 0..m 
δ: matrix [0..n][0..m] containing state numbers or "undefined" 
final: vector [0..n] containing booleans 
We also need to know which regular expression a given final state corresponds to. 
input: string of characters, accessed as an array [0..] 
pos: index into input, initially 0 

1: qa := undefined; posa := undefined; q := q0; pos0 := pos 
2: while pos < strlen(input): 
     q := δ[q][input[pos]] 
     if q == undefined then break while loop and go to 3 
     pos := pos+1 
     if final[q] then qa := q, posa := pos 
3: if qa == undefined then report error 
4: generate token based on qa and input[pos0,..,posa-1] 
5: pos := posa, goto 1 

Implementation Tricks/Notes 

Keywords look like identifiers but need not be encoded in the automaton. Instead have the code that 
creates ID tokens from identifier words check if the word actually is a keyword, and if it is, create the 
corresponding keyword token instead. The check can use a small binary search table or a hash table. 
This reduces the number of states (rows). 

Assume the digits 0..9 have identical transitions in all rows. Then compress those columns to a single 
one, indexed by character class "digit". Finally add a mapping from characters to character classes that 
maps 0..9 to "digit".  Both digits and letters can often be compressed using this technique, especially if 
keywords are handled outside of the automaton. This reduces the number of symbols (columns). 

Equivalent rows in the transition table can be shared by making it a vector [0..n] of pointers to vectors 
[0..m] of states. 

Rows can be viewed as lists of <symbol,state> pairs: equivalent parts of two or more rows can be 
pulled out and be represented as a list. Then a row can point to a list starting with the <symbol,state> 
pairs unique for that row, followed by a tail pointing to the shared list of transitions. This is a common 
compression technique, but it slows down table inspection. 

The lexer is typically implemented as a procedure called from the parser: each time the lexer is called, 
it restarts from its previous position, applies the automaton, and returns a single token. The lexer thus 
needs private state to remember its previous position. This can be implemented by global variables, or 
by passing a reference to a state record as a parameter to the lexer. 
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Multiple Start States 

Some constructs, like nested comments in SML, are difficult or impossible to handle as pure regular 
expressions. 

Many lexer generators allow you to specify multiple start states, and to restrict regular expressions to 
specific start states. 

Finally, most lexer generators allow you to execute arbitrary code after recognizing specific regular 
expressions, and to conditionally either resume scanning in a given start state, or to return a token. 

Example: handling nested comments in SML 

(* we have two start states, INITIAL and COMMENT *) 
%S COMMENT 

<INITIAL>"(*" ⇒ (YYBEGIN COMMENT; level := 1; continue()) 
... 
<COMMENT>"(*" ⇒ (level := level + 1; continue()) 
<COMMENT>"*)" ⇒ (level := level - 1; 
                  if level == 0 YYBEGIN INITIAL; 

  continue()) 
<COMMENT>. ⇒ (continue())
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