System Analysis
and Design

The Principles of Object
Oriented Design:
SOLID Principles

Salahaddin University
College of Engineering
Software Engineering Department
2011-2012

Amanj Sherwany
http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

SOLID Principles

= In computer programming, SOLID 1s a mnemonic

acronym introduced by Robert C. Martin in early
2000s.

= It stands for five basic principles of Object-Oriented
Programming and Design.

= The principles when applied together intend to
make 1t more likely that a programmer will create
a system that 1s easy to maintain and extend over
time.

SOLID Principles, Cont'd

= SOLID, stands for:

= Single Responsibility Principle (SRP)
Open-Closed Principle (OCP)
Liskov Substitution Principle (LSP)

Interface Segregation Principle (LSP)

Dependency Inversion Principle (DIP)

Single Responsibility Principle

= There should never be more than one reason for a

class to change.

= This principle states that every object should have a
single responsibility, and that responsibility

should be entirely encapsulatec

by the

= All its services should be narrowly aligned

responsibility.

ASS.

| with that

What Is a Responsibility?

= In the context of the Single Responsibility Principle
(SRP) we define a responsibility to be “a reason
for change.”

= If you can think of more than one motive for
changing a class, then that class has more than
one responsibility.

= For example, consider the Modem interface in the
next slide:

What is a Responsibility?
Cont'd
interface Modem({
public void dial (String pno);
public void hangup () ;

public void send(char c);

public char recv();

What is a Responsibility?
Cont'd

= Although all of the four functions belong to a
modem

= BUT the class have two responsibilities

= Connection management responsibility

= Data communication responsibility

= Should these two responsibilities be separated?

YES

What is a Responsibility?
Cont'd

«<interface» «<interface»
Data .
Channel Connection
+ send(:char) + dial(pno : String)
+ recv() : char + hangup()
A\ A
Modem

Implementation

Open/Closed Principle

= In OOP, the Open/Closed Principle (or OCP) states
“software entities (class, modules, functions, etc.)
should be open for extension, but closed for
modification.

= That 1s, such an entity can allow its behaviour to be
modified without altering its source code.

Open/Closed Principle, Cont'd

= This 1s especially valuable 1n a production
environment, where changes to source code may
necessitate code review, unit tests, and other such
procedures to qualify it for use 1n a product:

= Code obeying the principle doesn't change when it 1s
extended, and therefore needs no such effort.

Open/Closed Principle, Cont'd

When a new El"l-EIEJJE 5 added this
should be changed{and this is badit)

-
GraphicEditor I
if {(5.m_type == 1)
! drawiectangle();
HlrawC rcle) v oid else if (s.m_type == 2)
| HdrawR ectangle (v oid drawCircle();
| HlrawShape(void 4--------—-

¢ l ¢

Rectangle —[}I Shape 2 Circle

Open/Closed Principle, Cont'd

GraphicEditor
{ |
+dramShapes: Shapelv - - 5 kol
| shape
— <—
I*d'r'“ﬂw'ﬂ _ No changes regired when a new
shape-is added{GoodHly,
Rectange Circle

Liskov Substitution Principle

= Known as LSP.

= States that, in a computer program, if S 1s a subtype
of T, then objects of type T maybe replaced with
objects of type S

= 1.e., objects of type S may be substituted for objects
of type T, without altering any of the desirable
properties of that program.

Liskov Substitution Principle,
Cont'd

= A typical example that violates LSP 1s a Square
class that derives from a Rectangle class.

= Assuming getter and setter methods exist for both
width and height.

= The Square class always assumes that the width 1s
equal to the height.

= If a Square object i1s used 1n a context where a
Rectangle 1s expected, unexpected behaviour may
occur because the dimensions of a Square cannot
be modified independently.

Liskov Substitution Principle,
Cont'd

= This problem cannot be easily fixed:

= If we can modify the setter methods in Square class
so that they preserve the Square invariant (1.e.,
keep the dimensions equal), then these methods
will weaken (violate) the postconditions for the
Rectangle setters, which state that dimensions can
be modified independently

= Violations of LSP, like this one, may or not be a
problem 1n practice, depending on the
postconditions of invariants that are actually
expected by the code that uses classes violating
LLSP.

Interface Segregation
Principle

= The Interface Segregation Principle (ISP) 1s a
software development principle used for clean
development and 1s intended to help developers
avold making their software impossible to
change.

= If followed, the ISP will help a system stay
decouple and thus easier to refactor, change and

redeploy.

Interface Segregation
Principle, Cont'd

= The ISP says that once an interface has become too
'Tat' 1t needs to be split into smaller and more
specific interfaces so that any client of the
interface will only know about the methods that
are relevant to them.

Interface Segregation
Principle, Cont'd

Manager

-worker: IWorker

+setWorker({IWorkerd): wvoid
+manage(): woid

;

IWorker

+work(?y: woid
+eat(): wvoid

T

SuperWorker Worker

+work()y: wvoid
+eat(): wvoid

+work(): wvoid
+eat(): wvoid

Interface Segregation
Principle, Cont'd

Robot

+work(): wvoid

l

IFeedable IWorkable
+eat(): wvoid +work({): void
Manager
IWorker = -worker: IWorkable
+setWorker(IWorkable): wvoild
? +manage(): wold
SuperWorker Worker

+work(y: wvoid +work(): uqid
+eat(): wvoid +eat(): void

Dependency Inversion
Principle
= In OOP, the Dependency Inversion Principle (DIP)
states:

= High-level modules should not depend on low-level
modules. Both should depend on abstractions.

= Abstractions should not depend upon details. Details
should depend upon abstractions.

Dependency Inversion
Principle, Cont'd

= The goal of DIP 1s to decouple high-level
components from low-level components such that
reuse with different low-level component
implementations becomes possible.

= Applying inversion principle can also be seen as
applying the Adapter Pattern.

= 1.e. the high-level class defines 1ts own adapter
interface which 1s the abstraction that the high-
level class depends on.

Dependency Inversion
Principle, Cont'd

Copy

Read Write
Keyboard Printer

Dependency Inversion
Principle, Cont'd

—<> Copy < >—

Reader Writer
_&hstri _Abstract
Keyboard Printer

Reader Writer

Finally

= By now, almost all of you should know something
about patterns and OO principles.

= You should learn how to apply them, otherwise
they are useless.

= And you can learn how to apply them only after
practising a lot!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

