System Analysis
and Design

Software Architecture Design

Salahaddin University
College of Engineering
Software Engineering Department
2011-2012

Amanj Sherwany
http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

The Mission

“Build a user friendly web-
front for our 250
mainframe systems”

The Project

= A large Iraqi financial institution was opening a
new customer phone support department.

= They wanted more user friendly tools than the
32°70-based they normally used.

= The front-end should reflect the functions of the
back-end, 1.e., be a facade for the mainframe
Sy StEmS. (functional requirement)

The IBM 3270

The Basic Use Case

A customer calls the phone support service and
authenticates using a Customer-ID and PIN code.

A new call case 1s created in the CRM system.

The phone support clerk picks up the call.

The Customer-ID 1s transferred to the xFront
application and the total customer engagement 1S
fetched from the back-ends while the clerk greets
the customer.

The Basic Use Case, Cont'd

= The customer and the clerks handle the customers
problem and every action done by clerk on the
customers behalf 1s logged in the CRM case.

= The customer hangs up.

= The clerk writes a call summery in the CRM case
and closes the case.

Forces

= Worker ErgOnOmiCS (non-functional requirements)

= The phone service personnel spends 40 hours per
week 1n front of xFront 1n a tightly time passed
environment.

= Performance (non-functional requirements)

= More than three seconds waiting time for use data to
appear 1s experienced as an unnecessary delay.

" Scalablhty (non-functional requirements)

= The back-end computers use old and esoteric
protocols (SNA LU 6.2 and LU/2, Univac uts, ...)
and are resource constrained.

Forces, Cont'd

- Malntalnablhty (non-functional requirements)

= The data models in the mainframe systems does not
reflect the current business model and their current
VIEWS.

" Fl@lelllty (non-functional requirements)

= The mainframes are due for a major overhaul, the
entire retail banking system are being renewed.

" COHCUYT@HCY Problems (non-functional requirements)

= Data about a customer can be updated,
simultaneously, both from the xFront and from the
old 3270 applications.

Non-Functional Requirements

= Performance

= Scalability

= Maintainability
= Flexibility

= Reliability

= Security

accessibility
accountability
adaptability
administrability
affordability
agility
availability
composability
config ura bility
customizability
degradability
demonstrability
dependability
deployability
distrib utability
durability
avohability
axtensibility
flexibility
installability
interoperability
maintainability
manageability

mobility
nomadicity
operability
portability
predictability
recoverability
relavanoa
rediakvility

repe atability
reproducibility
rewusability
scalability
saamlassnass

sarvice ability (a.k.a. supportability)

securability
simplicity
stability
surivability
tailorability
testability
timeliness

understandability

usability
haniability

-
-
-~

¥ithin systemns engineering, {lities are aspects or non-functional requiremants. Thaey
are so-named because most of them end in "-ility"”
A subset of them (Reliability, Availability, Seniceability, Usability, and Installability) are
together referred to as RAS UL

For databases HASH is an important concept (Feliability, Availability, Scalability, and
Recoverability). The "-iities" often include:

-
e

Decisions

= Domain Model

= The system should use a common domain model
based on Financial Services Object Model (FSOM)

= The domain model should be implemented in Plain
Old Java Objects (POJO) so they can function as
the model objects 1n the client MVC model.

= The same model object implementations should be
used in the client and the server

Domain Model

wantity»
PrivateCustomer

+salary:Money

+socialStatus:SocialStatus
—

«entity»
Party
supplier| +party|D:1D party role
1 | +name:Name
+location:Location
+statu5:F'an£Status
0.* | arrangement supplies
tiy customer role
«2 MLl Y
Arrangement Cu“::;hmmer
+arrangementiD:ID consuMer—— e
+status:ArrangementStatus 1.* rofitProfit)
+validFrom:Date k5 s
+validTo:Date +status:CustomerStatus
wantity»
Concerns Product
+productlD:ID

+name:Name
+status:ProductStatus

B

consumes

FinancialProduct

«entity» «entity»
InformationProduct

wentitys»
CompanyCustomer

+numberOfEmployees:Integer

+reven ur—:-:Manez

Decisions, Cont'd

= Architecture

= The basic architecture should be a three-tiered in
order to minimize the traffic and connections to the
mainframes.

= Client

= The client should be a Java/Swing program in order
to enable a rich and ergonomic user interaction.

What i1s Software
Architecture?

= “The decomposition of a system into a set of
modules and interconnecting these modules™

= “The description of elements from which system
are built, interactions among those elements,
patterns that guide the composition, and
constraints on these patterns”

= “...deals with the design and implementation of the
high-level structure of a software”

Example

User Interface

Presentation

Architecture pattern

Application-s pecific - Shi t Selecti
Functionality (3 't] E r) i o

Catalogue Cu stomer Data
I Persistence Storage '

Reference model for on-line
shopping & ~

The Basic Truths

= Proper design of architecture is crucial to fulfilling
the non-functional requirements

= A job well-done makes this possible,
= But does not guarantee anything

= All possible non-functional requirements cannot be
addressed by the software architecture

Four Popular Heuristics

Don't assume that the original statement of the
problem 1s necessarily the best, or even the right
one

In partitioning, choose the elements so that they are
as independent as possible (=low external and
high internal complexity)

Simplity, simplity, simplity

Build in and maintain option as long as possible in
the design and 1implementations of complex
systems —you will need them

Decisions, Cont'd

= Server

= The server should abstract the differences between
the back-end systems in order to be able to replace
them with minimal system impact.

= The server should use lazy evaluation of the domain

model object in order to conserve back-end
bandwidth.

= The server should use standard connection
techniques for different kinds of back-ends in order
to be comprehensible and/or natural for subject
matter experts.

Basic Architecture

= Three tier 1n order to
offload the resource
constrained back-end

systems. |
xFront Server
= Java/Swing client in A

Mainframe Mainframe Mainframe
Order tO ensure I System A \ l System B l ‘ System C \

ergonomics quality.

xFront Client

Client Architecture

= Model/View/Controller
architecture since Viewr Objece
Swing 1s MVC.

= A server proxy
abstracts the network
communication and
exposes one method
per server interface
function.

Conrtroller

Model Object

Server Proxy

Server

= POJO acts as model in
the MVC.

Server Architecture,
Business Layer

Session Facade to abstract
the business layer in
terms of use cases.

Java Value Object as
Domain Model
implementation.

Value Object Home as
object factory.

Value Object Helpers to
do lazy evaluation.

xFront Client

Session Facade

Value Object

Helper

VOHome

Y

Dara Access
Object

Server Architecture,

Integration Layer

Data Access Objects to
abstract away data source.

‘ HUQWJ
Cache to minimize back-end

e

bandwidth requirements.

Data Source Adapters to
encapsulate back-end
knowledge.

Standard Connectors for
least surprise to subject
matters experts.

Dara Access

Data Source
Adapter

l Connector

Mainframe
System A

Cache

Object

Data Source

Adapter

Dara Source

Adapter

T

' Connector

Connector

Mainframe

-

System B

Mainframe

aystem L

References

= This presentation 1s almost a direct copy/paste from
a keynote given by Thorbiorn Fritzon, Systems
Architect at Oracle (then Sun) at Uppsala
University.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

