System Analysis
and Design

Statecharts

Salahaddin University
College of Engineering
Software Engineering Department
2011-2012

Amanj Sherwany
http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

Statechart Modelling

= Looking at a system as a set of states and
transitions between the states 1s a powerful
abstraction.

= A state can be understood as a mode of operation,
and a transition simply when the system switches
from one mode to another.

= A trivial example 1s a window on a computer
screen, that can be either minimised, maximized
or have an arbitrary size

Statechart Modelling, Cont'd

Click minise icon
)[MinimisedJ (State J

lick icon In dock Trigger .
= Transition
Maximised

T Start state

Arnltrary
Click maximise icon L ¢ @ Stop state

Statechart Modelling, Cont'd

= Problems with the previous model:

e There 1s no way to minimise an arbitrary-sized
window without first maximising it.

e If you minimise a maximised window, when you
display it again, it 1s no longer maximised.

e The starting state captures the initial state of the
system —a window starts at arbitrary size.

= Note: the absence of stop state, why?

Statechart Modelling, Cont'd

Click icon in dock
Minimised

1
Click icon in doc Click minimise icon

[Maximiged]([Was maximised before]

T Click maximise icon [Bls&]

[Arbitrary)H

Click maximise icon T

Statechart Modelling, Cont'd

= In the previous model, when leaving Minimised
state:

e [f the window was previously maximised, we go back
to that state

e Otherwise, we go to the arbitrary state.

= The guards that must be true for a transition to take
place are written in [...] brackets.

= If you are running Mac OS X, a program can be
either visible or hidden, which can be modelled in
several ways.

Statechart Modelling, Cont'd

[Was minimised before]

Click minimise icon o <
LN Minimised
Click icon in dock T(:Iick mrimise icon
Make Visible
Ctri+H
[Was maximised before] /
\ EN
rl+ \
Maximised [else] 3;\
S
A

[else]

Click maximise icon

Y
-
Arbitrary &

Click maximise icon

Ctri+H

[Was maximised before]

Statechart Modelling, Cont'd

= There are several ways to tackle the complexity of
the previous model.

* One elegant way 1s to use a hierarchical statechart,
where states can be nested inside each other states.

Statechart Modelling, Cont'd

= First we can see that there 1s no way that you can
change the size of a hidden window.

= From this we infer that a program 1s either hidden
or visible.

= Only 1n the visible state can windows' size be
manipulated.

= Starting from this slightly different angle, we model
the system.

Statechart Modelling, Cont'd

Hide

J >
.—)l Visible [Hidden J
< Show

= Then, we specify 1n greater detail what can happen
when a window 1s visible, by exploding the
Visible sate.

= At this point we add entry and exit actions, written
in the top-left corner of the sate.

Statechart Modelling, Cont'd

entry / restoreState() Visible
exit / saveState()

.“-—g.)(M' imised \ [savedState == min] Show
mnimise <

Click Click icon in dock " Hidden
minimise
icon [Was maximised before] Click Hide
/> | minimise
\ icon
Maximised [else]
[else]
\
Click 4
MAXIMASE (Arbitrary)<7
icon
Click maximise icon
[savedState == max]

Multiple Simultaneous States

= In statecharts, 1t 1s possible to be 1n several states at
the same time: the state Maximised implies the
state Visible.

= But this only happens for sub states!

= In all other cases, states are considered mutually
exclusive, with a notable exception for
“orthogonal regions”.

When to Use Statechart
Models

= It 1s very frequently used 1n real-time systems and
embedded systems.

= It can help in understanding time-critical behaviour,
and model the number of steps from an incoming
event until it 1s processed.

= Medical devices, financial trading services, satellite
command and control systems are other examples
of domains where the use of statecharts 1s
prevalent.

States and Transitions

We have shown how certain aspects of a system can
be modelled as transitions between states.

The states are abstract concepts, and each state
might concretely be represented by a number of
variables with different values at run-time.

Sometimes 1t makes sense to implement a *‘state
variable” that captures the current state of the
system.

Checking “what state we are 1n” 1s as simple as
looking at the state variable.

Triggers and Guards

= A state transitions 1s labelled with the trigger that
causes it.

= Sometimes a transition is guarded by a condition
which must be true for the transition to happen.

= We use the diamond notion where the incoming
transition 1s labelled 1n the usual way, and the
outgoing transition 1s guarded.

Triggers and Guards

Add another bottle

Shop at
Systemet

Approach cashier

[age=20] [age>=20]

o 5

Actions

= Entry 1nto a state, exit from a state and transition
can have actions such as updateDisplay ()

(could also be in natural language).

Add another bottle

Shop at
Systemet

Approach cashier

[age<20]/put bottels back [age==20]/put bottels on belt

o O

Hierarchical State Machines

= In many cases it makes sense to look at the states of
a single system from several levels of abstraction.

= The internal transitions among the substates can be
modelled either inside the enclosing state or 1n a
separate diagram.

= State transitions going from the enclosing state are
considered coming out of all the nested sub states.

Ordering of Actions

main source Active state main target Active state
of T1 before transition LCA(s1, s2) of T1 after transition
| | : | |
;| l s I |
| | | |
; s1 | B, 52 I ™
exit / b(): 1 entry / ¢(); :
[ST N e T1 [g()] /() e ~ s21
anit!a{}: J = entry / e(); J
\. J \. J

Ordering of Actions, Cont'd

= If the guard g() evaluates to true, then the events
happen in the following order: a(), b(), t(), c(),

d(), e().

e All the exit conditions of the nested states inwards-
out until we reach the outer-most state transitioned
from (in this case a() and b())

» Then any actions on the transition (in this case t())

e Then all the entry actions followed by actions on start
transitions outside-in of all the nested states (in this

case ¢(), d() and e()).

Orthogonal Regions

= One aspect not covered by the previous examples 1S
that of orthogonal regions in a state.

= Normally, with the exception of nested states, a
system 1s 1n a single state only at any given point.

= However, with orthogonal regions, we can model
systems as being in several states simultaneously,
which 1s often essential for modelling concurrent
behaviour.

Orthogonal Regions, Cont'd

= Orthogonal regions are drawn as nested states
where the enclosing state 1s divided into several
regions with a dashed line.

= The following statechart shows a web server
consisting of a web service that:

e ecither awaits requests or processes them, and

e alog rotation service that moves big log files to some
storage disk every 30 minutes

Orthogonal Regions, Cont'd

Web Server

incoming request

Accepting Processing
Requests
done
30 minutes has passed
Sleep [no more big logs]/reset timer Awake

[big log file exists]/move it to storage

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

