System Analysis
and Design

Object Oriented Analysis

Salahaddin University
College of Engineering
Software Engineering Department
2011-2012

Amanj Sherwany
http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

http://www.amanj.me/wiki/doku.php?id=teaching:su:system_analysis_and_design

Object-Oriented Analysis

= The am 1s 1dentifying:
 the objects in the system

e their properties and/or interconnections

e their behaviours and/or responsibilities

e and potentially also groupings of objects into classes
and 1nter-class relationships with respect to
generalisation

= We can analyse an existing system to try to derive
these properties (too late), or we can be driven by
the requirements 1n a more constructive fashion.

Object-Oriented Analysis,
Cont'd

= OO analysis comes after requirements elicitation,
not as a part of.

= Object-Oriented Analysis: is the use of object
modelling for functional requirements.

= OO analysis 1s the first step of the design process to
develop an overview of the system and its
important components.

Analysis for Design

= Without proper analysis, a design 1s likely to be
wrong which can be devastating if not timely
detected.

= Common analysis activity will generally produce a
number of:

e use case scenarios

e conceptual models or “class diagrams™

Use Case Scenarios

= A use case should describe what the system shall do
for the user (or actor in UML terminology) to
achieve a particular goal at an appropriate level or
detail without any implementation specifics.

= Each use case should constitute a “complete course
of events” from the actors' point of view.

= Different actors are used to model different roles
that users may have when interacting with the
system.

Use Case Scenarios, Cont'd

= Examples of suitable actors for an OS might be
'user’, 'guest’, and 'super user'

= The advantage of visual use case description 1s that
they are easy to read since flow 1s more easily
expressed in diagrammatic notation rather than in
text.

= Use cases are excellent starting points for building
system tests.

Textual Use Case: Transfer
Money

Name: Transfer money

Purpose: Allows the actor transfer money between accounts

Optimistic flow:
1. Actor logs into the system
2. Actor selects from account, enters fo account and a sum
a. If the sum is =2 200 USD, a fee of 2% the sum is added
b. If the sum is <200 USD, no fee is added
3. The update balance(s) is displayed

Pessimistic flow:
Problem 1: No from or to account selected/entered
1. Actor is prompted to select the from account/enter to account
Problem 2: To account does not exist
1. Actor is notified that the fo account does not exist
2. The current (unchanged) balance is displayed
Problem 3: Sum exceeds available funds

Internet Bank

To Other People

1/ &
Check halance
Check balance

.,—'—"'_'_'-f / l,i.r’
Transfer money Pay bills
Customer /\

Between Own Accounts

Internet Bank

Login Agent

Analysis Techniques for
Identifying Classes

= There 1s no good way to 1dentity classes properly,
even formal models are not that good.

= There are some “decent” ways, though:

e Analysis with CRC Cards
e Analysis of Natural Language

Analysis with CRC Cards

CRC stands for Class, Responsibility, Collaborators

CRC cards are normal index cards —one card per
class

Analysts write the class' name, 1ts responsibilities
in the system, and what classes it is collaborating
with to fulfil 1ts responsibilities

CRC cards can be filled out in a way similar to use
cases where team members walk through system
scenarios

Analysis with CRC Cards,

P
H:-Lal'i 'F-ri.ﬂﬂif
Mecowalaks M-s’

pefreshas on dimad

s
TPenwng Vi
Duawine, Couhaler

|

Cont'd

WMEHI-}.&J
Hotds Puawuas amel
¢t ok Hoad bs for
gelecked Figoms.
Frnde Fochid homs
{ Honsdl ov Fﬁ”}

Analysis of Natural Language

= In this approach we look at the written requirements
and analyse the language use.

= This 1s not entirely unproblematic, as the writer and
writing style clearly influences the wording of the
requirements.

= However this technique for identifying possible
actors and operations 1s still very useful.

e Perhaps even before proceeding with a CRC analysis

Class Diagrams

Class diagrams: capture the classes 1n a system,
and their interconnections.

They can be drawn at many levels of detail, and 1t
might be useful to draw several different class
diagrams for the same system, with different foci.

A class diagram might perhaps start with a simple
object diagram, or it might as well start with the
results of a CRC analysis.

At this level, we might even introduce some
generalisations.

Object Diagram

Shipment
Employee
/ Order __ __ association
Customer ! JIT Warehouse I
Basket
Inventory I
DVD \
Book
% %

™ \
—_ \ objects

Class Diagram

Employee
Person .
Shipment JIT Warehouse
generalisation — — = Inventory
Sestomer | ——|_giwles t
|
attribute
Basket
ltem

DVD I Book I<— — — data

Developing Class Diagrams

= A next step in developing the previous class
diagram could be to add:

o Multiplicities
e Roles or names

e Perhaps followed by attributes and operations

Developing Class Diagrams,
Cont'd

Persun|<‘:]— Employee in Shipment

~
? —pac#&dﬁy &

Customer Shipment
1 -order

a name for an 1
association ~

-
4Holds curregt items for
‘1
Placed ine 1
Item < Basket Order

-price: double T
-weight: double i
-identifier: int H“PEFE rons |
+getPrice(): double P multiplicity
+getWeight(): double

Developing Class Diagrams,
Cont'd

= The notation (-) stands for private and (+) for public

= Directions are added, where necessary to point out.
For example, there seems not to be possible to
navigate from employee to the shipments she has
packed, nor from items to baskets.

= Without explicit directions, associations are
understood to be bidirectional, which 1s seldom
the case 1n practise 1n an implementation.

Developing Class Diagrams,
Cont'd

= Sometimes, an association has interesting semantic
properties that we may want to capture.

= For example, maybe we wish to allow purchases of
several copies of a book, and maybe time-
stamping when the books are placed in the basket
to resolve prioritising when running out of stock

= We could represent it like the follow diagram.

Developing Class Diagrams,
Cont'd

= Further down the road, we might wish to capture
constraints 1n the class diagram.

= At this point, we will be content with simple natural
language statements written in { and }, which 1s a
standard UML syntax.

Developing Class Diagrams,
Cont'd

{never two purchases in the

same basket for the same item} -purchases
1

-price: double -item [-basket
-weight: double
-identifier: int
+getPrice(): double
+getWeight(): doublej

Purchase

-time: Date
-amount: iInt {never negative }

Aggregation and Composition

= Objects are generally quite small and useless on
their own

= Rather, objects are combined into aggregates, or
aggregate objects.

= In UML Aggregation 1s denoted by a white
diamond.

= A black diamond 1s used to denote Composition in
UML.

Aggregation and Composition,
Cont'd

LinkedList
-first: Link
-last: Link Link
+insert{0Object) < :}'
data: Object
+remove(0Object)
+head(): Object -next
+tail({): LinkedList -prev
Hand
1
5

Finger

Next?

= Use case diagrams (and CRC card stacks) are used
as a basis for sequence diagrams.

= Sequence diagrams mode the behaviour of a use
case, emphasising the time-based flow of event.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

