
Sana: Languages à la carte

Amanj Sherwany
sherwany.amanj@gmail.com

Joint work with: Nate Nystrom
nate.nystrom@usi.ch

Scala-Montreal Meetup
Functional Programming Montréal Meetup

1 / 29

sherwany.amanj@gmail.com
nate.nystrom@usi.ch

If only X programming
language had this feature!

If you have ever had this wish, you are in the right place!

2 / 29

If only X programming
language had this feature!

If you have ever had this wish, you are in the right place!

2 / 29

The "Perfect" Programming Language

In traditional approaches, features can be added using:

General Purpose
Language

+/- Your Dream
Features

Your Dream
Language

Macros
[Kohlbecker et al. ’86]

Aspects
[Irwin et al. ’97]

Extensible Language
Frameworks

[Ekman et al. ’07]

Extensible Compilers
[Zenger et al. ’01]

3 / 29

The "Perfect" Programming Language

In traditional approaches, features can be added using:

General Purpose
Language

+/- Your Dream
Features

Your Dream
Language

Macros
[Kohlbecker et al. ’86]

Aspects
[Irwin et al. ’97]

Extensible Language
Frameworks

[Ekman et al. ’07]

Extensible Compilers
[Zenger et al. ’01]

3 / 29

The "Perfect" Programming Language

In traditional approaches, features can be added using:

General Purpose
Language

+/- Your Dream
Features

Your Dream
Language

Macros
[Kohlbecker et al. ’86]

Aspects
[Irwin et al. ’97]

Extensible Language
Frameworks

[Ekman et al. ’07]

Extensible Compilers
[Zenger et al. ’01]

3 / 29

The "Perfect" Programming Language

In traditional approaches, features can be added using:

General Purpose
Language

+/- Your Dream
Features

Your Dream
Language

Macros
[Kohlbecker et al. ’86]

Aspects
[Irwin et al. ’97]

Extensible Language
Frameworks

[Ekman et al. ’07]

Extensible Compilers
[Zenger et al. ’01]

3 / 29

The "Perfect" Programming Language

In traditional approaches, features can be added using:

General Purpose
Language

+/- Your Dream
Features

Your Dream
Language

Macros
[Kohlbecker et al. ’86]

Aspects
[Irwin et al. ’97]

Extensible Language
Frameworks

[Ekman et al. ’07]

Extensible Compilers
[Zenger et al. ’01]

3 / 29

The "Perfect" Programming Language

In traditional approaches, features can be added using:

General Purpose
Language

+/- Your Dream
Features

Your Dream
Language

Macros
[Kohlbecker et al. ’86]

Aspects
[Irwin et al. ’97]

Extensible Language
Frameworks

[Ekman et al. ’07]

Extensible Compilers
[Zenger et al. ’01]

3 / 29

The "Perfect" Programming Language

In traditional approaches, features can be added using:

General Purpose
Language

+/- Your Dream
Features

Your Dream
Language

Macros
[Kohlbecker et al. ’86]

Aspects
[Irwin et al. ’97]

Extensible Language
Frameworks

[Ekman et al. ’07]

Extensible Compilers
[Zenger et al. ’01]

3 / 29

But what if we want to
remove a feature!?

Up until now, we were out of luck, but not anymore!

4 / 29

But what if we want to
remove a feature!?

Up until now, we were out of luck, but not anymore!

4 / 29

Traditional Compilers

I Are built incrementally
I Existing features cannot be removed easily
I A massive amount of coupling
I The smallest unit is a compilation phase

5 / 29

Traditional Compilers

6 / 29

Wait, can’t we do better?

7 / 29

Sana Overview

I A fully modular and extensible framework
I Provides an easy way to remove existing features
I The smallest unit is a transformation component (more on

this later)

8 / 29

Sana Overview, Continued

AST node Transformation Families (i.e. compilation phases)
Naming Typing Code Generation Closure Conversion

lambda X X X
variable X X X
method X X X X
literal X
class X X X X
.

9 / 29

Demo

10 / 29

Our Goal

11 / 29

AST

// Expr is an abstract syntax component,
// and is the supertype of all expressions
trait Expr
case class IntLit(value: Int) extends Expr
case class Add(left: Expr, right: Expr) extends

Expr
case class Mul(left: Expr, right: Expr) extends

Expr

// The types
trait Type
case object NoType extends Type
case object IntType extends Type
case class ErrorType(error: String) extends Type

12 / 29

Open Classes

trait Expr {
private var attributes: Map[String, Any] =

Map.empty
def getAttr[V](k: String, default: V) =

attributes.getOrElse(k, default)
.asInstanceOf[V]

def setAttr[V](k: String, v: V) =
attributes += (k -> v)

}

13 / 29

Open Classes, Continued

implicit class AugmentedExpr(e: Expr) {
// getter and setter for expression type
def tpe: Type = e.getAttr("type", NoType)
def tpe_=(tpe: Type) =

e.setAttr("type", tpe)

// getter and setter for the position
def pos: Position =

e.getAttr("pos", NoPosition)
def pos_=(pos: Position) =

e.setAttr("pos", pos)
}

14 / 29

Transofrmation Components

Pattern matching vs. partial
functions

15 / 29

Transofrmation Components, Continued

trait TyperComponent extends
TransformationComponent[Expr, Expr] {
def typed(expr: Expr): Expr

}

16 / 29

Transofrmation Components, Continued

@component
trait IntLitTyperComponent extends

TyperComponent {
(lit: IntLit) => {

// translates to:
// new AugmentedExpr(lit).tpe = IntType
lit.tpe = IntType
lit

}
}

17 / 29

Transofrmation Components, Continued
@component
trait AddTyperComponent extends TyperComponent {

(add: Add) => {
val nl = typed(add.left)
val nr = typed(add.right)
val ty1 = nl.tpe
val ty2 = nr.tpe
if(ty1 == IntType && ty2 == IntType) {

val r = Add(nl, nr)
r.tpe = IntType
r

} else {
val r = Add(nl, nr)
r.tpe = ErrorType(s"type mismatch: ${ty1}

and ${ty2}")
r

}}}
18 / 29

Transformation Family (Compilation Phase)

object TyperFamily extends TransformationFamily
{

def typed(expr: Expr): Expr = {
val fun = components.reduce((x, y) => x

orElse y)
fun(expr)

}

val components: List[TyperComponent] =
generateComponents("IntLit,Add,Mul",

"TyperComponent" , "typed")
}

19 / 29

Language Module (Compiler)

trait ExprLang extends
LanguageModule[Expr, String] {

def compile = TyperFamily.typed join
PrettyPrinterFamily.pprint

}

20 / 29

How This Works

21 / 29

What Does Sana Provide?

I A core language module, called tiny
I Macros to eliminate boilerplate (generateComponents,

@component)
I A skeleton for compilers (symbol table, a base AST, a base

type, error reporting facilities and others)

22 / 29

Heavily Used Scala Features

I Partial Functions (components are partial functions)
I Function composition
I Macros
I Implicits
I And a little bit of monads

23 / 29

Evaluation 1: Java 1.0

Modules Description LOC
tiny A small module with no Java specific components 773
calcj Arithmetic calculator 939
primj Primitive features of Java 2033
brokenj break, continue, labels and switch statements 899
ooj Packages, classes, interfaces and other OO features 6073
arrayj Arrays, this builds on top of BrokenJ 813
arrooj Combines OOJ and ArrayJ 786
roobustj Exception handling 1803
dynj Cast and instanceof 136
ppj synchronized and volatile 446
modulej import and class loaders 2232
bytecodej JVM bytecode generation 2694
Total 19627

24 / 29

Evaluation 2: Oberon-0

I Oberon does not have classes, but it has records.
I In Oberon-0 the size of arrays is part of the type.
I Oberon-0 has type-aliasing, but Java does not.
I Simple type inference is performed for constant variables in

Oberon-0.
I Oberon-0 has structural subtyping for records, while Java has

nominal subtyping. There is no common supertype like
Object in Oberon-0.

I Methods in Java can be overloaded; Oberon-0 procedures
cannot.

I Only 1121 LOC!

25 / 29

Evaluation 3: DCCT

I Like Oberon-0, DCCT is dramatically different from Java.
I Has dictionaries but not arrays.
I Has records with constructors but not classes.
I The primitives are completely different from the ones found in

Java.
I Only 783 LOC!

26 / 29

Evaluation 4: Performance

I We used our Java compiler to compile the standard library of
Java 1.0 (which is, 14053 lines of code).

I Our experiments were run on a 2.3 GHz Intel Core i7
machine (MacBook Pro 15-inch retina display) with 16
gigabytes of RAM, running OS X 10.9.5.

I We used Scala version 2.11.7 and JVM 1.8.0_51 64-bit.
I Our compiler finished compilation and emitting the bytecode

in an average of 16.25 seconds (over 5 runs), while Oracle’s
Java compiler could finish it in 2.5 seconds.

I Given that our compiler is an unoptimized prototype,
performance is reasonable.

27 / 29

Source Code

Available at:
http://github.com/amanjpro/languages-a-la-carte

28 / 29

http://github.com/amanjpro/languages-a-la-carte

Thanks!

Questions?

29 / 29

